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INTRODUCTION

EPILEPSY

Epilepsy is the most common serious neurological disorder, affecting up 
to 1.0% of the population at any given time.1 It is a chronic brain disorder 
characterized by recurrent epileptic seizures, defined as a transient 
occurrence of symptoms due to excessive or synchronous neuronal activity.2 
Seizure manifestations can range from short involuntary muscle twitches to 
generalized convulsions with loss of consciousness, depending on the brain 
regions involved.3 Seizures can be very disabling and are often unpredictable, 
resulting in stress, social isolation, and decreased quality of life.4

The diagnosis of epilepsy relies solely on medical history, obtained from 
the patient and from witnesses. Home videos of the events are routinely 
requested when diagnosis is uncertain. Laboratory procedures such as EEG, 
MRI, blood tests and genetic testing can support a diagnosis, determine 
seizure type and syndrome, and establish etiology.5

Approximately two thirds of people with epilepsy can be treated effectively 
with (a combination of) anti-epileptic drugs.6 The remaining have refractory 
epilepsy, with seizures which are not controlled by anti-epileptic medication. 
In cases of refractory epilepsy, other treatment modalities such as surgical 
treatment, neurostimulation or diets maybe be considered.7 

DIAGNOSTICS IN THE EPILEPSY MONITORING UNIT
If a diagnosis or disease etiology cannot be ascertained via (hetero-)
anamnesis, complemented with a short EEG recording and/or an MRI, long-
term EEG-video recording may be performed. Such recordings are made in 
an epilepsy monitoring unit (EMU), where a patient stays for 24 hours up 
to 1-2 weeks, depending on the objective. Recordings are used to determine 
seizure type, to examine therapeutic options (e.g., surgery), or to distinguish 
epilepsy from non-epileptic seizures.8

Patient safety and quality of diagnostics in the EMU depends on the staff 
response to seizures. In most EMUs, staff are continuously present to 
monitor patients. When seizures are detected, EMU staff attend the person 
to reduce the risk of or treat injuries resulting from seizures.9 Additionally, 
staff performs standardized tests to assess consciousness and neurological 
functioning during seizures, aimed at determining seizure semiology and 
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type.10 Fast detection of seizures upon occurrence may improve safety and 
aid diagnosis in the EMU.

EPILEPSY SURGERY AND BIOMARKERS TO GUIDE 
RESECTION

Epilepsy surgery may be considered if seizure control could not be attained 
with multiple trials of antiepileptic drugs, and the person has a focal 
epileptic syndrome which is remediable by surgery. Surgery is currently the 
only curative treatment option for refractory focal epilepsy. Early surgical 
intervention may also prevent harmful effects of continuing seizures, 
notably changes in brain network topology,11 as well as of prolonged 
use of antiepileptic drugs.12 The goal of epilepsy surgery is to remove the 
epileptogenic zone, or to disconnect this zone from the brain network.13 
While epilepsy surgery is often successful, about a third of patients having 
had a resection do not achieve seizure freedom.14

There is need for biomarkers to delineate the epileptogenic tissue to be 
resected to assure seizure freedom post-surgically. Even in the presence 
of an epileptogenic lesion on MRI the resection boundaries are not always 
clear, e.g. in cases of neuronal tumors, in which the epileptogenic zone 
may extend beyond the lesion, or when the hippocampus is secondarily 
affected.15 Ictal (i.e. seizures) and interictal events (e.g., epileptic spikes or 
high-frequency oscillations) found in noninvasive and sometimes invasive 
electrophysiological recordings can be used to delineate epileptogenic 
tissue before surgery. An intra-operative electrocorticogram (ECoG), in 
which epileptogenic tissue is delineated by showing areas with epileptiform 
activity, may help increase surgery success rate by enabling tailored resection. 
Recordings can be made quickly and can provide direct feedback on the 
adequateness of resection during surgery. Currently resection tailoring is 
done by identifying spikes in the ECoG, but this method is controversial.16,17 
High-frequency oscillations (HFOs), especially fast ripples (250-500 Hz), 
are likely more specific than spikes and may thus be more suited to the 
tailoring of epilepsy surgery.17 Surgical removal of cortex showing fast ripples 
has been associated with post-operative seizure freedom.18

SAFETY MONITORING OF HIGH-RISK EVENTS
Up to a third of people with refractory epilepsy keep having seizures regularly 
because of unsatisfactory seizure control by medication, neurostimulation 
or surgical treatment,19 which puts them at risk. People with epilepsy have a 
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higher probability to die prematurely, compared with the general population 
(more than double in chronic epilepsy).20,21 Sudden unexpected death in 
epilepsy (SUDEP) is usually a seizure-related event and convulsive seizures 
are considered an important risk factor.22–24 After major seizures the person 
is often incapacitated or in need of first aid owing to (non-life-threatening) 
injury, but not able to alert anyone. 

Monitoring people who are at risk because of their seizures could increase 
their safety.25,26 When a caregiver is alerted to the occurrence of high-
risk events that can result from epileptic seizures, care can be provided. 
Convulsive seizures for example often leave subjects incapacitated or 
injured and SUDEP is often preceded by this type of seizure. Interventions 
such as repositioning the subject, stimulation, or clearing of the airway may 
have a protective effect in preventing SUDEP.27 Some types of seizures can 
also cause high-impact falls which may lead to serious injury, requiring first 
aid.28 And while apneas are self-limiting when occurring during seizures, 
they may, when occurring after a seizure, lead to asystole and SUDEP.29

Continuous real-time video monitoring is sometimes performed manually 
to detect high-risk events, but this is very time-consuming and privacy-
sensitive, whilst dangerous seizures or after-seizure effects may be missed. 
Automated seizure detection devices can help alert caregivers to seizures. 
The currently available devices are, however, not suitable for all patient 
groups: Devices attached to the bed are only usable when patients are in bed, 
and wearable detection devices are not tolerated by some patient groups, 
like children or people with intellectual disability. An alternative solution is 
remote detection, using sensors that can cover a living area. Video cameras 
can be used as sensitive, versatile and relatively cheap remote sensors to 
quantify movement, and automated online analysis may enable remote 
detection of high-risk events.

DATA STREAM MONITORING AND AUTOMATED 
MARKERS

In specialized epilepsy care, data streams are often monitored and analyzed 
real-time by a human observer to detect events. Such events can be ictal or 
interictal transient signals produced by the brain and specific for epilepsy. 
The events usually occur unexpectedly. Knowledge about these events 
can aid diagnosis or direct treatment, and can also indicate the need of 
immediate assistance. It might be of vital importance that these events are 
noted directly upon occurrence. 
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Event monitoring may take place in epilepsy monitoring units, in operating 
rooms, and at homes of people with epilepsy. In the EMU, seizures need to 
be detected by staff so they can go to the patient to reduce risks arising from 
seizures (e.g., treat injuries) and to perform testing during the seizure to 
aid diagnosis. In the operating room, the electrocorticogram is monitored 
for spikes or high-frequency oscillations when a tailored surgical epilepsy 
resection is performed. The locations and frequencies of these markers help 
delineate the area of brain tissue that needs to be resected for the patient 
to become seizure free. In homes of people with epilepsy, monitoring for 
(results of) dangerous seizures can improve safety by indicating whether 
someone is in need of assistance and at risk of sudden death.

For events to be detected, expert human observers need to inspect online – 
often multiple – data streams (e.g., EEG channels or video streams). During 
monitoring, the observers have to be continuously vigilant for occurring 
events of interest. This visual observation is time-consuming, subjective, 
and sensitive to distractions. Human brains are incapable of processing 
all incoming information in parallel.30 The attention we use to select the 
important information to detect events is limited in capacity,31 over time as 
well as spatially.32 Consequentially, important events could be missed, which 
might impair safety and the quality of diagnosis and treatment. 

Automated markers have the potential to solve these issues. Automated 
markers might detect occurrences and characteristics (e.g., timing and 
location) of events in the data streams, and in addition might be able to 
identify data streams (e.g., epochs on specific channels) that are likely to 
contain events.

OUTLINE OF THIS THESIS
The aim of this thesis is to improve situations of real-time data monitoring 
for event detection in epilepsy, by constructing and validating automated 
algorithms to detect markers of epilepsy. The algorithms should detect 
seizures in the EMU, delineate epileptogenic tissue during epilepsy surgery, 
and detect high-risk (consequences of) seizures in patient’s homes. For each 
of these markers the starting point for our work is different according to the 
state of the art in the specific field. Our additions to the respective fields 
range from algorithm construction to validation and investigation of the 
added value of algorithms when applying them in real life.
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PART I: AUTOMATED MARKERS TO ENHANCE 
DIAGNOSIS

Online seizure detection algorithms might help staff on the EMU to 
detect seizures that are otherwise missed or recognized late. Detection 
performance of such algorithms has been studied thoroughly, showing good 
sensitivity and low false alarm rates.33 Knowing about the sensitivity and 
specificity of algorithms alone is, however, not sufficient when considering 
implementation. In most EMUs such algorithms would be used in addition 
to staff, who may also detect seizures. The goal of automated detection is not 
substitution of EMU staff by automated detection, but to aid the detection of 
seizures. In Chapter 2 we investigate the added value of applying algorithms 
for online seizure detection in the EEG, in terms of extra detected seizures or 
faster detection time compared to staff. 

PART II: AUTOMATED MARKERS TO ENHANCE 
TREATMENT

During surgery, an automated algorithm is needed that can independently, 
reliably, and reproducibly delineate the epileptogenic zone to be resected. 
The algorithm needs to be able to function in real time, and should be 
insensitive to artefacts. In Chapter 3 we present a novel autoregressive 
model residual variation (ARR) algorithm, aiming to automatically delineate 
the epileptogenic zone. In Chapter 4 we adjust the ARR algorithm to reduce 
the influence of typical intra-operative artefacts. We also test the potential 
of the new algorithm to identify epileptogenic tissue during surgery. 

PART III: AUTOMATED MARKERS TO ENHANCE SAFETY 
MONITORING

We aim to monitor people at risk because of their seizures by designing a 
system with three modules that can detect convulsive seizures, falls, and 
apneas. We use video cameras as sensitive, versatile and relatively cheap 
remote sensors that can quantify movement patterns of interest throughout 
the home. 

Previously, our research group presented an algorithm aiming to discern 
convulsive seizures from normal behavior in video recordings.34 A detection 
threshold had, however, not yet been established and the detection 
performance had not been determined in a real-life setting. This is required 



15INTRODUCTION

1

to show the algorithm’s usefulness in daily practice and to provide guidelines 
to enable its use. In Chapter 5 we establish performance of a non-contact 
convulsive seizure detection algorithm, by determining a detection threshold 
and by investigating detection performance as a function of several variables.

The few papers written on fall and apnea detection in video sequences do 
not show sufficient detection performance of current algorithms for our 
clinical application, in which fast detection, high detection sensitivity, and 
low false positive rates are needed. Furthermore, to keep computing time of 
the 3-module detection system short, it would be beneficial to have the same 
preprocessing step for each module. In Chapter 6 we present an automated 
algorithm for remote detection of falls, based on a physical model of a fall, 
aiming at universality and robustness. In Chapter 7 we present a novel 
algorithm for real-time detection of apnea events in video, aiming at fast 
detection when the subject is immobile.

In Chapter 8 the findings of this thesis are summarized and discussed. 
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ABSTRACT

OBJECTIVE

User safety and the quality of diagnostics on the epilepsy monitoring unit 
(EMU) depend on reaction to seizures. Online seizure detection might 
improve this. While good sensitivity and specificity is reported, the added 
value above staff response is unclear. We ascertained the added value of 
two electroencephalograph (EEG) seizure detection algorithms in terms of 
additional detected seizures or faster detection time.

METHODS
EEG-video seizure recordings of people admitted to an EMU over one year 
were included, with a maximum of two seizures per subject. All recordings 
were retrospectively analyzed using Encevis EpiScan and BESA Epilepsy. 
Detection sensitivity and latency of the algorithms were compared to 
staff responses. False positive rates were estimated on 30 uninterrupted 
recordings (~24 h per subject) of consecutive subjects admitted to the EMU.

RESULTS
EEG-video recordings used included 188 seizures. The response rate of staff 
was 67%, of Encevis 67%, and of BESA Epilepsy 65%. Of the 62 seizures 
missed by staff, 66% were recognized by Encevis and 39% by BESA Epilepsy. 
Median latencies were 31 s (staff), 10 s (Encevis), and 14 s (BESA Epilepsy). 
After correcting for walking time from the observation room to the subject, 
both algorithms detected faster than staff in 65% of detected seizures. The 
full recordings included 617 h of EEG. Encevis had a median false positive 
rate of 4.9 per 24 h and BESA Epilepsy of 2.1 per 24 h.

CONCLUSIONS
EEG-video seizure detection algorithms may improve reaction to seizures 
by improving the total number of seizures detected and the speed of 
detection. The false positive rate is feasible for use in a clinical situation. 
Implementation of these algorithms might result in faster diagnostic testing 
and better observation during seizures.
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INTRODUCTION
Video-EEG monitoring in an epilepsy monitoring unit (EMU) is widely used 
as a diagnostic tool in people suspected of having a seizure disorder. It can 
be used to determine seizure type and classification, to distinguish epilepsy 
from nonepileptic seizures, or to examine or evaluate therapeutic options.1,2 
People are continuously monitored by staff in a separate observation room, 
using real-time video, audio, and EEG recordings. When seizures are 
detected, nursing staff enter the subject’s room to reduce the risk of adverse 
events such as falls, respiratory compromise, and injuries.3 Standardized 
tests are also performed to assess consciousness and cognition during 
seizures, which helps to determine seizure semiology and type.4,5 

Staff supervision demands skills and uninterrupted attentive observation for 
any sign of a seizure, as otherwise, they may be missed. One study showed 
a response rate of 41% to seizures with a mean latency over 2 min.6 While 
response rate and time may vary between EMUs, response rates are limited 
by human abilities. Seizures are often recognized by clinical manifestations, 
so seizures showing subtle or no clinical semiology are more often missed. 

Online seizure detection algorithms might help to detect seizures that 
could have otherwise been missed or recognized too late. Seizures can be 
detected with a variety of signals, such as movement, electrodermal activity, 
heart rate, and EEG. We focused on EEG seizure detection as it is closest 
to the source of epilepsy, specific to epilepsy, and measured as standard on 
every EMU. EEG seizure detection has been ascertained since 1982, and 
much research has since been performed on various approaches to seizure 
detection.7–10

Recently, EEG seizure detection software, such as Encevis EpiScan and BESA 
Epilepsy, has become commercially available. Encevis EpiScan uses two 
modules that detect epileptiform activity.11,12 To detect seizures, the extracted 
features are continuously compared with past information from the EEG. The 
BESA Epilepsy software estimates normalized energy and integrated power 
for different frequency bands.13,14 This algorithm is based on the hypothesis 
that seizure activity manifests itself by a change in frequency and amplitude 
that is distinct from non-seizure or background activity. When extracted 
features are above a threshold for longer than 10 s, a seizure is detected. 
BESA Epilepsy has been developed and tested for adults.

Seizure detection algorithms have been studied thoroughly and show good 
detection sensitivity and low false response rates.8,9 For Encevis EpiScan 
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a sensitivity of 81% with a false-detection rate of 0.30 per hour has been 
reported;15 BESA Epilepsy was reported to have sensitivity of 87% with a 
false-detection rate of 0.22 per hour.14 It is, however, unclear what added 
value the seizure detection algorithms provide to EMU seizure monitoring, 
as these algorithms are not widely implemented.16 It is important to know 
the added value, as seizure detection systems are not standalone but aids 
for staff already present. We investigated this added value by assessing: 1) 
the current response rate and latency of staff to seizures; 2) the sensitivity, 
latency, and false positive rates of Encevis EpiScan and BESA Epilepsy; 3) the 
value added to the current response in terms of additional detected seizures 
and shorter latency; and 4) which monitoring cases could benefit from these 
algorithms.

METHODS

EMU SETTING

The added value of a detection algorithm depends on the work setting and 
the staffing; to allow comparisons, we describe here our setting: It is an 
8-bed unit, where each individual stays in a separate room, for up to 5 days. 
Three to four remote control cameras are installed in each room to capture 
the whole room. Individuals have call buttons to alert staff.

Subjects are monitored continuously by staff (specialized nurses) in an 
observation room, where a real-time EEG, electrocardiogram (ECG), video, 
and audio stream is shown for each room. An intercom system can be used 
for communication. When a seizure is noticed, the subject is attended to 
ensure safety and execute standardized diagnostic tests. Three nurses are 
present during the daytime and two during the night. No automated seizure 
detection techniques are used.

EEG RECORDINGS
A Micromed EEG system (Micromed, Mogliano Veneto, Italy) was used to 
record EEGs with a sampling frequency of 256 Hz. The international 10–
20 electrode placement system was used. Some individuals had additional 
electrodes to provide higher spatial sampling. After recording and reporting, 
it is standard practice to cut EEG and video files to decrease storage space. 
Only diagnostically relevant parts of the registration, for example diagnostic 
tests and seizures, are stored.
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DATA SELECTION

Seizures between May 2014 and April 2015 were included retrospectively in a 
seizure database. Only seizures confirmed as epileptic in the corresponding 
EEG report and longer than 5 s were included. To prevent overrepresentation 
only two seizures per subject were included. If more than two seizures were 
present, two of the first five were randomly selected. It’s important to perform 
diagnostic tests in these initial seizures, so staff response is required; this 
might not be the case for later seizures. The seizure database encompasses 
a representative sample of all seizure types occurring in the EMU. Seizures 
where staff was already present at the start of the seizure were excluded, as 
response could not be evaluated. Seizures where the patient alerted the staff 
were not excluded. Call buttons will not be removed from clinics when using 
EEG-based seizure detection and are therefore an important addition to 
visual recognition of seizures by staff. The EEG file duration of the seizures 
could vary depending on how files were cut.

An additional database (the 24-hour database) was collected, consisting 
of nonstop EEG recordings. These recordings represent all registrations 
occurring on an EMU and can therefore be used to calculate false positives. 
The 24-hour database included 30 consecutive recordings from September 
2016. For every subject, a section of 16 to 24 consecutive hours of the 
recording was randomly included.

This study was carried out in accordance with the Code of Ethics of the World 
Medical Association (Declaration of Helsinki) for experiments involving 
humans.

SCORING OF REGISTRATIONS
Seizures’ start and end in both databases were identified by trained reviewers. 
Four different time points were scored: clinical seizure onset (CSO), clinical 
seizure end (CSE), electrographic seizure onset (ESO), and electrographic 
seizure end (ESE), as illustrated in Figure 2.1. The ESO was defined as the 
moment where the first EEG seizure pattern could be seen and the ESE 
where it ends. The CSO was defined as the start of the first clinical symptom. 
The CSE was defined as the time when subjects were able to resume normal 
activities, as up to that point, it is of value to respond to seizures. The CSO–
CSE period may therefore include postictal symptoms.

For the seizure database, electrographic and clinical seizure characteristics 
were also scored to evaluate how easily changes could be detected by an 
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observer. Both sets of characteristics were scored using values between 1 
and 4, representing no visible manifestations (1) to very clear manifestations 
(4), from the perspective of the nurses who monitor the subjects. The 
characteristics were scored every 5 s until staff responded, up to the first 
60 s of the seizure. From these scores, a mean value was calculated. Seizure 
classification was also collected from EEG reports.

The interictal EEG in the 24-hour database was evaluated to investigate 
whether epileptiform activity would influence the false positive rate. Four 
categories were used: ‘Normal interictal EEG’, ‘Abnormal interictal EEG with 
nonspecific nonepileptiform abnormalities’, ‘EEG with some epileptiform 
abnormalities’, and ‘EEG with frequent epileptiform abnormalities’, based 
on the EEG report.

Staff response was evaluated by retrospectively reviewing the videos from 
the seizure database. A response was defined as staff entering the room of 
the subject or using the intercom any time from the seizure onset until 10 
s after the end of the seizure (when EEG and clinical manifestations have 
both stopped).

All recordings were analyzed retrospectively using Encevis EpiScan and 
BESA Epilepsy. The detection algorithms should operate the same in an 
online situation, but due to unavailability of online functioning this could 
not be tested.

SENSITIVITY
We calculated the detection sensitivity of staff, Encevis EpiScan, and BESA 
Epilepsy. A correct detection was defined as occurring within the period 
from 10 s before the start of a seizure (CSO or ESO) to 10 s after the end of a 
seizure (ESE or CSE) (Figure 2.1).

Clinical symptoms
EEG seizure pa� erns-10 s +10 s

Time sec� on for correct detec� on

CSO CSE

ESEESO

FIGURE 2.1. 
Seizure marker timing, which might vary between subjects. CSO (clinical seizure onset), CSE (clinical 
seizure end), ESO (electrographic seizure onset), and ESE (electrographic seizure end) were scored for 
every seizure.
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LATENCY

Latency of staff, Encevis EpiScan, and BESA Epilepsy detections were 
calculated from electrographic seizure onset (ESO). For BESA Epilepsy, 10 s 
were added to account for the delay in the algorithm’s online functioning; the 
algorithm places detection markers at seizure onset after having registered 
10 s of the seizure. The median and p5–p95 percentile ranges of the latencies 
were calculated.

FALSE POSITIVES
The false positive rate of Encevis EpiScan and BESA Epilepsy was calculated 
on the 24-hour database. A false positive is defined as a detection that does 
not take place during a seizure, i.e., beyond 10 s before the start of a seizure 
(CSO or ESO) and 10 s after the last end (ESE or CSE).When a false positive 
occurred, a black-out period of 10 s was defined, in which no new false 
positives could occur. The median false positive rate and p5–p95 percentile 
ranges were calculated.

STATISTICAL ANALYSIS
The difference in sensitivity between seizure characteristics (adulthood, 
seizure classification, clinical characteristics, and electrographic 
characteristics) (separately for staff, Encevis EpiScan, and BESA Epilepsy) 
were tested for statistical significance with a Chi-square test. If a characteristic 
could not be determined, the recording would be removed from this analysis.

We also assessed the effect of subject age and the amount of interictal 
abnormalities in the EEG on the false positive rate with a Kruskal–Wallis 
test. The significance level was set at p ≤ 0.05. All analyses were performed 
using MATLAB (R2017a, The MathWorks Inc.).

RESULTS
In total, 188 seizures in 115 subjects were included in the seizure database 
and 617 h of 30 subjects in the 24-hour database. The mean age in the seizure 
database was 28.7 years (SD 17 years) and was 24.2 years (SD 15.5 years) 
in the 24-hour database. Included seizures were generalized onset seizures 
(9.6%), focal onset seizures with temporal lobe semiology (42.6%), focal 
onset seizures with extratemporal lobe semiology (45.7%), and seizures that 
could not be classified (2.1%).
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SENSITIVITY
The sensitivity of staff, Encevis EpiScan, and BESA Epilepsy are shown in 
Table 2.1. Of the 62 seizures missed by staff, 41 were recognized by Encevis 
EpiScan and 24 by BESA Epilepsy. Sixteen seizures were recognized only by 
staff. The comparison of sensitivity of Encevis EpiScan and BESA Epilepsy 
for all seizures and all seizures undetected by staff are shown in Figure 2.2. 
The influence of different seizure characteristics on the sensitivity are shown 
in Table 2.2.

LATENCY
Latency results are shown in Table 2.1. Figure 2.3 shows the time of detection 
of Encevis EpiScan and BESA Epilepsy compared to staff response time. 
In 83.5% of the 103 seizures detected by staff and Encevis EpiScan, the 
algorithm detected the seizure faster than the staff response. In 81.6% of 
the 98 seizures detected by staff and BESA Epilepsy, the algorithm detected 
the seizure faster than the staff response. This would lead to a median 
improvement of 18.1 s for Encevis EpiScan and a median improvement of 
15.6 s for BESA Epilepsy. When correcting for walking time of 10 s from the 
observation room to the subject, Encevis EpiScan was still faster in 65.0% of 
detected seizures and BESA Epilepsy in 65.3% of detected seizures. 

FALSE POSITIVES
Median false positive rates can be found in Table 2.1, and a histogram of the 
false positive rates per subject is shown in Figure 2.4. Encevis EpiScan had 
low false positive rates for almost every subject. BESA Epilepsy had zero false 
positives for most subjects but also some outliers with many false positives. 
Most false positives with Encevis EpiScan occurred during the first analysis 
hours. This is probably due to a learning period, in which the algorithm 
needs to establish a baseline. If the alarm of Encevis EpiScan was turned off 

TABLE 2.1. 
Performance of staff, Encevis EpiScan and BESA Epilepsy.

Staff Encevis EpiScan BESA Epilepsy

Sensitivity 67.0% 77.6% 65.4%

Median detection latency in 
seconds (p5 to p95) 31 (-5 to 98) 10 (-4 to 50) 14 (6 to 68)

Median false positive rate 
per 24 hours (p5 to p95) - 4.9 (1.2 to 13.8) 2.1 (0 to 222.7)
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Overall algorithm sensi�vity

62.8% 14.9%

2.7%
19.7%

Detected by Encevis EpiScan and BESA Epilepsy
Detected by Encevis EpiScan
Detected by BESA Epilepsy
Not detected by algorithms

Addi�onal detec�ons by algorithms

 

38.7%

27.4%

33.9%

No staff
response
(62 
seizures)

Staff
response
(126 
seizures)

FIGURE 2.2. 
Overall sensitivity of seizure detection algorithms Encevis EpiScan & BESA Epilepsy on all 188 seizures 
(left) and sensitivity for seizures missed by staff (right).
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FIGURE 2.3. 
Time of algorithm detection compared to staff response time (at 0 s) for the seizures detected by the 
algorithm and staff. For BESA Epilepsy, 10 s was added to account for the delay in the algorithm’s online 
functioning. A red line is drawn to take walking time of staff into account (10 s). Some outliers are out 
of axes bounds; −1579, −611 and − 215 s for Encevis Episcan and −552, −253, 309, 392 and 3173 s for BESA 
Epilepsy.
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Staff Encevis 
EpiScan BESA Epilepsy

Sensi-
tivity

p-
Value

Sensi-
tivity

p-
Value

Sensi-
tivity

p-
Value

All 
subjects 67.0% - 77.6% - 65.4% -

Age Children under 
18 years (n=54)

59.3% 0.03 79.6% 0.68 72.2% 0.21

Adults (n=134) 70.1% 76.9% 62.7%

Seizure 
classifi-
cation

Generalized onset 
(n=18)

88.9% 0.004 100% <0.001 100% <0.001

Focal 
onset 
seizures

Temporal 
(n=80)

75.0% 86.3% 71.3%

Extra-
temporal 
(n=86)

55.8% 64.0% 53.5%

Unclear classification 
(n=4)

- - -

Clinical 
charac-
teristics

No visible changes 
(n=27)

37.0% <0.001 85.2% 0.51 66.7% 0.31

Subtle clinical 
symptoms (n=119)

67.2% 77.3% 61.3%

Clear clinical 
symptoms (n=34)

82.4% 70.6% 73.5%

Very clear clinical 
symptoms (n=8)

100% 87.5% 87.5%

Electro-
graphic 
charac-
teristics

No visible changes 
(n=6)

66.7% 0.03 66.7% <0.001 0% <0.001

Subtle changes 
(n=73)

54.8% 58.9% 39.7%

Clear focal changes 
(n=73)

72.6% 89.0% 83.6%

Clear diffuse changes 
(n=36)

80.6% 94.4% 91.7%

TABLE 2.2. 
Sensitivity of staff, Encevis EpiScan, and BESA Epilepsy for seizures with different characteristics. The 
difference in sensitivity for specific characteristics was tested for statistical difference per detection 
method with a Chi-square test. Values under the significance level (p ≤ 0.05) are presented in bold. 
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during the first hour, the false positive rate would decrease by 36.4% and by 
46.1% if it were turned off for the first 2 h. 

Children had a higher false positive rate than adults for Encevis EpiScan (p 
= 0.0430), with a median false positive rate of 6.99 per 24 h for children 
and 4.47 per 24 h for adults. The difference in false positive rate between 
registrations with different interictal abnormality categories was not 
statistically significant. BESA Epilepsy also had a higher false positive rate in 
children than in adults (p = 0.0057), with a median false positive rate of 39.1 
per 24 h for children and 1.28 per 24 h for adults. Additionally, EEGs with 
frequent interictal epileptiform abnormalities had a significantly higher 
false positive rate (p = 0.0308), with a median false positive rate of 33.1 per 
24 h (compared to 1.16–9.86 for EEGs with fewer abnormalities).

DISCUSSION
Reaction to seizures can be improved by online EEG seizure detection 
algorithms by improving the number of detected seizures and the response 
latency after seizure onset. We were able to show that more than half of 
the undetected seizures could be recognized by EEG seizure detection 
algorithms. For most seizures the detections by both algorithms preceded 
detection by staff. The algorithms had acceptable median false positive rates.

The staff response and latency that we found is better than the previously 
described response rate of 41% with an average latency of 142.3 s.6 This 
may be due to differences between EMU settings, e.g., staff experience or 
EMU layout. The sensitivity and specificity of the algorithms that we found 
are comparable to those from previous reports.14,15 Latency has not been 
previously described. The added value above staff already present has not 
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FIGURE 2.4. 
Distribution of false positive rates for all subjects. 
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previously been reported. This information is key, since a seizure detection 
algorithm will not be a stand-alone system but an addition to current staff.

Staff response and sensitivity of detection algorithms are influenced by 
characteristics of seizures and the individuals. When there is a low staff 
response rate but algorithms are able to detect seizures, people could 
particularly benefit from their use. Staff response was highly dependent on 
clinical characteristics of seizures, as response is based on symptoms seen 
on the video stream. Conversely, algorithms were mostly dependent on the 
presence of electrographic changes. This influence is also reflected in the 
sensitivity for different seizure classifications. For example, generalized 
seizures are electrographically and clinically very clear and therefore have 
a high response rate by staff and algorithms. Focal onset seizures with 
extra-temporal lobe semiology, on the other hand, were short with few 
clinical and electrographic changes, which explains the lower response 
rate by staff and algorithms. Thus, people with less clear seizures showing 
electrographic changes could benefit from these algorithms, for example in 
case of seizures with temporal lobe semiology. Children might benefit from 
seizure detection algorithms, as staff sensitivity was lower in this group. A 
higher false positive rate was, however, found for children. This might be 
due to variations in EEG patterns in children, making it more challenging 
to differentiate normal EEG from ictal patterns.17 Children in our dataset 
more often had EEG abnormalities, which also influenced the specificity of 
the algorithms. Encevis EpiScan still had an acceptable false positive rate for 
children, so its use could be preferred over BESA Epilepsy in children.

The algorithms could not be tested online, as at the time of the study they 
were not ready for online implementation. Therefore, the true effect of 
these algorithms could not be assessed. Sensitivity and false positive rates 
were tested in two different databases, because a dataset of full recordings 
including all type of seizures was not available at the time of the study. Testing 
in the same full recordings allows estimation of the false positives relative 
to the true positives and calculation of positive predictive values. This study 
did not include any nonepileptic events, as these events cannot be detected 
by EEG-based algorithms. Lastly, depending on how staff are trained and 
subjects are monitored, the staff response rate may differ between different 
EMU settings. Since lower response rates were found in another center, the 
added value in other centers might be higher than we described.6

Future research should focus on testing these algorithms online on 
continuous unselected data. Additionally, performance of EEG seizure 
detection algorithms might increase when using multisensor seizure 
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detection. We do not see substantial benefit from adding movement-based 
sensors or electromyographic sensors. These detectors perform best on 
tonic-clonic seizures or hypermotor seizures, which are already recognized 
by staff and algorithms. There might be an improvement when adding ECG 
seizure detection. Heart rate changes occur in all type of seizures and mostly 
in the beginning or even before the electrographic start of a seizure.18,19 
Adding this modality might increase sensitivity and latency, but more 
research on this topic is necessary.

CONCLUSION
Online EEG seizure detection algorithms can improve the staff response to 
seizures by detecting additional seizures and improving latency. The false 
positive rate is reasonable for use in a clinical setting. Implementation of 
these algorithms may help to ensure patient safety and improve the quality 
of diagnostics by assessing consciousness and cognition in a timely manner.
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ABSTRACT

OBJECTIVE

The objective of epilepsy surgery is to resect completely or to disconnect 
the epileptogenic zone (EZ). We propose a novel automated algorithm to 
approximate the EZ in presurgical intracranial electroencephalograms 
(iEEG), while providing reproducible output. 

METHODS
The seizure onset zone (SOZ), a surrogate marker for the EZ, was approximated 
from iEEGs of nine people with temporal lobe epilepsy (TLE), using three 
methods: 1) total ripple length (TRL): manually segmented high-frequency 
oscillations, 2) rippleness (R): area under the curve of the autocorrelation 
functions envelope, and 3) autoregressive model residual variation (ARR, 
novel algorithm): time-variation of residuals from autoregressive models 
of iEEG windows. TRL, R, and ARR results were compared in terms of 
separability, using Kolmogorov-Smirnov tests, and detection performance, 
using receiver operating characteristic (ROC) curves, to the gold standard 
for SOZ delineation: visual observation of ictal video-iEEGs. 

RESULTS
TRL, R, and ARR can distinguish signals from iEEG channels located within 
the SOZ from those outside it (p < 0.01). The ROC area under the curve was 
0.82 for ARR, while it was 0.79 for TRL, and 0.64 for R. 

CONCLUSIONS
ARR outperforms TRL and R, and may be applied to identify channels in the 
SOZ automatically in interictal iEEGs of people with TLE. ARR, interpreted 
as evidence for nonharmonicity of high-frequency EEG components, could 
provide a new way to delineate the EZ, thus contributing to presurgical 
workup.
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INTRODUCTION
Epilepsy is a chronic brain disorder characterized by recurrent epileptic 
seizures.1 When a patient has an epileptic syndrome that is possibly 
remediable by surgery, and seizure control could not be attained with 
multiple trials of antiepileptic drugs, the patient qualifies to enter presurgical 
evaluation. The objective of epilepsy surgery is to resect completely or to 
disconnect the epileptogenic zone (EZ), which is defined as the minimum 
amount of cortical tissue that must be resected to produce seizure-freedom.2 
The EZ is a theoretical concept. In practice, surrogate markers for the EZ are 
used, such as the seizure onset zone (SOZ), defined as the area of the cortex 
from which clinical seizures are generated.3

The gold standard method of determining the SOZ is visual observation 
of ictal recordings from intracranial electroencephalograms (iEEG) and 
synchronized video.3 During such observations a representative sample of 
habitual seizures needs to be recorded with electrodes positioned in the 
SOZ. Therefore, several days of video-EEG recording may be required (at 
least one week). As a consequence, review of the attained long-term video-
EEG is both laborious and time consuming.

When validated, using interictal high-frequency oscillations (HFOs) to 
delineate the SOZ may result in a reduced need for seizure recordings, thus 
shortening EEG registration time.4 Interictal HFOs have been associated 
with epileptic properties of neuronal tissue in the brain.5–8 HFOs have been 
shown to be reliable markers of the SOZ,6,9–12 and to provide better SOZ 
localization than interictal spikes.9,11,13 Visual detection of HFOs is subjective 
with poor inter-rater reliability and reproducibility,14 and time consuming, 
due to the small time frame needed to observe the oscillations with their 
short duration and small amplitude.15 Automatic detection of HFOs could 
possibly solve these problems, and several possibilities to implement such a 
detector have been proposed in the literature.11,14,16–20

HFOs, and especially ripples (80–250 Hz oscillations), are not necessarily 
a sign of epileptogenicity alone; they can also have a physiological origin. 
Physiological ripples (∼200 Hz) have been measured in the CA1 region of 
the hippocampus, the entorhinal cortex,21 the mesiotemporal lobe, and the 
extratemporal neocortex.22 Therefore, when using HFOs to identify the SOZ, 
it is important to realize that HFOs may also be found in areas outside the 
SOZ; e.g. in the contralateral hippocampus. Furthermore, “false ripples” can 
result from filtering sharp epileptic transients or nonsinusoidal oscillations 
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in the EEG.23,24 Consequently, separation of epileptic HFOs and other HFO-
like signals remains a challenge.

We propose a novel methodology, for which the main underlying 
assumption is that epileptic HFOs are of the nonharmonic type. In other 
words, they cannot be exactly described as solutions of a linear differential 
equation of a certain order. There can be a variety of reasons for deviation 
from harmonic behavior, such as noise input, nonstationary parameters, 
and nonlinear dynamics. Various quantifiers that characterize for example 
nonlinearity related to a single recording site have proved effective in aiding 
the lateralization and localization of the EZ.25–33 The capacity for SOZ 
localization (not limited to lateralization) of the corresponding algorithms 
is, however, reported only in a sub-selection of those studies.27,32,33

We aimed to design an automated algorithm that can independently, 
reliably, and reproducibly approximate the SOZ, as a surrogate marker for 
the EZ. The proposed algorithm quantifies certain nonharmonic features 
of high-frequency EEG components to select regions that may be closest to 
the SOZ. As a secondary goal, we investigated if ‘rippleness’, obtained with 
an algorithm previously proposed by our group,33 could possibly be used for 
fast automated estimation of the amount of HFOs. We investigated if the 
previously found correspondence between rippleness and the total length 
of manually scored HFOs (80-250 Hz), can be reproduced in our data set. 
Subsequently, the new algorithm is compared with manually scored HFOs 
and rippleness in terms of their ability to approximate the SOZ.

METHODS

SUBJECTS

Nine individuals with intractable temporal lobe epilepsy were included. 
The selected individuals were candidates for epilepsy surgery between 2008 
and 2012, and the registered iEEGs were part of the presurgical work up. 
The iEEG registrations were performed at Stichting Epilepsie Instellingen 
Nederland (SEIN), in Heemstede, The Netherlands. No further exclusion 
criteria were applied beyond the sampling frequency of the stored data 
(>1000 Hz). Data were analyzed retrospectively; individuals had epilepsy 
surgery at least one year prior to conducting this study. Relevant clinical 
information on the subjects in this study is shown in Table 3.1.
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Sub-
ject Age Sex Day Seizure onset zone Resected area (year)

Surgical 
outcome 
(follow up)

1 22 F 3
ATHCL1, MTHCL1, 
IAIL2-4, AML1-2, 
IAPL2-4, TPL1-3

L temporal + insula (2011) UCLA IA 
(1.5)

2 27 M 8
LesAntR1-2, LesSu-
pR2-3, LesAnIR1-3, 
InsAntR1-5

R temporo-insular frontal 
(2012)

UCLA IA 
(1)

3 63 M 2
1) HAR1-3, HPR1-3, 
AR1-4;  
2) HAR1-3 IAIR1

R temporal + amygdalo-
hippocampectomy (2011)

UCLA III 
(2)

4 28 M 7 1) HCR1-5; 2) HCL1-
5; (1>2)

R temporal + amygdalo-
hippocampectomy (2008)

UCLA II 
(4.5)

5 13 F 3 FODL4-7 * 
Superior to earlier resec-
tion area (L frontal, 2009) 
+ L SMA (2010)

UCLA IV 
(3.5)

6 35 F 6 HCL1-2, AML1-2

L fronto-temporal + 
amygdalohippocampec-
tomy +fronto-opercular + 
frontobasal (2008)

UCLA IB 
(5)

7 26 F 4

1) ATR1-2, AHR1-2, 
MHR1-2, IAR2-4, 
PHR1-2;  
2) MHL1-2; (1>2)

R hippocampectomy 
(2011)

UCLA II 
(2)

8 26 F 3 HCR1-3
R temporal + leasionec-
tomy + amygdalohippo-
campectomy (2010)

UCLA IB 
(3)

9 39 M 10 TBL1-3, HC1L1-3, 
HC2L1-3, AML1-2 L temporal (2011) UCLA IA 

(2)

* There is possibly a second, less frequent seizure type (involving PSMAL, PSMAR, TOL, 
and PFL bundles in its SOZ), but due to many artefacts and unclear seizure semiology, 
this hypothesis could not be substantiated.

TABLE 3.1. 
Subject information. Age is defined at time of registration; registration day is defined as the day, during 
registration, after medication lowering. Surgical outcome is defined in terms of the UCLA classification, 
and follow up period is given in years. UCLA 1A: Free of disabling seizures and auras, UCLA 1B: Free of 
disabling seizures, UCLA 2: Rare disabling seizures, UCLA 3: Worthwhile improvement, UCLA 4: No 
worthwhile improvement.34 For electrode locations and corresponding abbreviations, see Supplementary 
Table 3.S1.
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DATA

INTRACRANIAL EEGS

All patients underwent iEEG registration for at least one week. Depth 
electrodes were implanted at the Academic Center for Neurosurgery of the 
Free University Medical Center (VUmc) in Amsterdam, The Netherlands. 
Ad-Tech (Racine, WI, USA) electrodes with a 2.4 mm2 contact size were 
used. Electrode placement was guided by instructions from clinical 
neurophysiologists and authors SC and DV, according to clinical hypotheses 
regarding the SOZ and ictal spreading patterns. These hypotheses were 
formed on the basis of scalp video EEG and MRI, supplemented by MEG, 
PET, and SPECT results. iEEG data was recorded using a 65-channel 
Schwarzer amplifier (Schwarzer GmBH, Germany) implying 0.016 Hz 
hardware high-pass filtering. The amplifier was coupled to a workstation 
with Harmonie 6.2 acquisition software (Stellate Systems, Montreal, PQ 
Canada). During registration of the iEEGs, a silent electrode situated in the 
white matter was chosen as a reference. An external ground electrode was 
placed on the forehead of the subject. A sampling frequency of 1000 Hz was 
used. Antiepileptic drugs were tapered to increase the chance of a seizure 
occurring during registration; this was part of the standard operating 
procedure. Based on visual inspection, EEG channels with severe artefact 
contamination were excluded from further processing. All recordings were 
performed using referential montages. Bipolar montages were secondarily 
constructed by subtracting the signals from the neighboring contacts on 
each depth electrode.

CLINICAL DATA

The SOZ was determined by visual observation of ictal recordings from the 
video-iEEG by DV and SC, based on ictal changes in time-related context of 
the semiology. These findings were used as the gold standard. The outcome 
of surgery was assessed according to the UCLA classification proposed by 
Engel et al., simplified to discriminate classes IA, IB, II, III, and IV.34 For 
part of the analysis in this study, subjects are subdivided into two outcome 
groups: subjects with good postoperative seizure control (UCLA class IA, IB, 
II) and those with poor postoperative seizure control (UCLA class III, IV). 
The SOZ and surgical outcome are shown in Table 3.1. A total of 77 channels 
of EEG data were considered to be inside the SOZ, with 364 channels outside 
the SOZ.
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EEG DATA SELECTION

Five consecutive minutes of slow-wave-sleep (SWS) were selected from the 
iEEG data of each subject. HFOs and spikes occur more frequently during 
SWS,9,10 and the signals of the iEEG channels closest to the skull are less 
influenced by muscle activity in this sleep stage. During the iEEG registrations 
no surface EEG, electro-oculograms, or electro-myograms were recorded, so 
we relied on information on sleep staging that could be gathered from the 
iEEG. SWS epochs were found with a method similar to the one used by 
Dümpelmann et al.20 The relative delta power was tracked automatically in 
the iEEG, with relative delta power being the energy in the delta band (0.5-
4 Hz) divided by the energy in a large frequency band (0.5-100 Hz). The 
module to calculate spectral features in Stellate Harmony (Stellate Systems, 
Montreal, PQ Canada) was used to obtain the relative delta power trend. 
The relative delta power trend was obtained throughout a nightly recording 
in 30-s windows in three superficial iEEG channels from different bundles. A 
5-min epoch, in which the relative delta power exceeded 70%, was selected 
for each subject and used in the analysis for this study.

DATA ANALYSIS
Data were analyzed retrospectively using three methods independently: 
Visual detection of HFOs, the rippleness algorithm, and the novel 
autoregressive model residual variation (ARR) algorithm. Results from 
all three methods were compared with the gold standard (visual SOZ 
determination). An overview of the analysis steps is shown in Figure 3.1. 
Data analysis was performed using Matlab (Mathworks, Natick, MA, USA) 
version 7.5.0.

TOTAL RIPPLE LENGTH (TRL)

Each 5-min iEEG epoch was assessed visually for HFOs using the currently 
standard method, similar to the one described by Jacobs et al.13 An 80 Hz 
high-pass filter (Finite Impulse Response filter, order 63) was applied to 
discern the HFOs from the relatively high-voltage background activity. 
HFOs were visualized in eight channels simultaneously, while displaying 
the traces at maximum time-resolution. Events were regarded as ripples if 
their amplitude was clearly higher than the high-frequency baseline activity 
of the channel, and the oscillation consisted of at least four periods. HFOs 
were distinguished from presumed artefacts based on their frequency 
content and sharpness and co-occurrence over several channels.4,35 HFOs 
were marked by a technical physician (E. Geertsema) and revised by an 
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experienced observer (M. Zijlmans). After HFO segmentation the TRL (sum 
of the lengths of all ripples) was calculated per channel.

By filtering above 80 Hz, manually segmented HFOs lay in the ripple (80-250 
Hz) range. With the sampling frequency (1000 Hz) used, it was unfeasible 
to take fast ripples (250-500 Hz) into account. Digital sampling at five times 
the oscillation frequency of interest is advisable to sample adequately the 
temporal dynamics of an HFO.36

RIPPLENESS (R)

Channel rippleness was obtained by applying a previously described 
algorithm that uses the autocorrelation function (ACF) and its area under 
the curve (AUC) to quantify the extent of oscillation in a signal.33 A brief 
description is provided here.

iEEGs: 
all channels, bipolar

montage

5 minutes 
of SWS

5 minutes 
of SWS

Area under the 
curve (rippleness)

Autocorrela� on 
func� on

80 Hz Huang-
fi ltering

Total ripple length

Visual scoring of 
HFOs

80 Hz high-pass 
fi ltering

ARR

Residuals from 
AR-modelling

Windowing

FIGURE 3.1. 
Informational flow diagram of how the data in this study was used. Dashed arrows indicate comparison 
of data. (iEEG: Intracranial electroencephalogram, SWS: slow-wave sleep, HFOs: high-frequency 
oscillations, ACF: autocorrelation function, AUC: area under the curve, SOZ: seizure onset zone, AR: 
autoregressive, ARR: autoregressive model residual variation.)
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First, the selected 5-min epoch of iEEG data was 80 Hz high-pass filtered, 
using a morphological decomposition of the signal, the Huang-Hilbert 
transform. This filtering method is applied because unlike commonly used 
FIR filters, it does not cause spurious oscillations which can be mistaken for 
ripples.23,33 Subsequently, the ACF is calculated using

,	 (3.1)

where S(t) is the filtered signal through time, S(t+τ) the shifted signal with 
lag τ (t and τ in samples). The lowest frequency of interest was selected as 80 
Hz and a maximal number of 10 cycles to constitute an HFO was postulated. 
Therefore, a maximum lag of 10/80 of a second, or 125 samples (with a 1000 
Hz sampling frequency), was chosen. The envelope of the ACF is obtained 
by the Hilbert transform, after which the area under the envelope, or curve 
(AUC), can be calculated. This quantity represents the total power of 
oscillations above 80 Hz, or rippleness (R).

AUTOREGRESSIVE MODEL RESIDUAL VARIATION (ARR)

The autoregressive model residual variation (ARR) algorithm uses the 
presence of high residual signal variation after autoregressive (AR) model fit 
as a biomarker to identify contacts in or close to the SOZ. High ARR values 
are interpreted as evidence of the presence of nonharmonicity in iEEG 
signals.

AR modeling was selected because the frequencies and damping coefficients 
resulting from AR modeling can quantify oscillatory properties of an EEG.37 
A preliminary study in part of the data (subjects 1, 2, 3, 4, 5, and 7, results 
not shown here) showed that iEEG windows containing ripples measured 
in areas close to the SOZ exhibited higher residual signal variation after 
AR model fit than windows with ripples from areas outside the SOZ (e.g., 
from the contralateral hippocampus). Moreover, when the residual signal 
variation from all iEEG windows in a 5-min epoch was obtained, channels 
in the SOZ showed frequent windows with an excessively high residual. By 
quantifying these frequently occurring high residuals using the coefficient 
of variation (i.e. a normalized standard deviation), a classifier was found for 
the approximation of the SOZ. 

The processing steps executed by the ARR algorithm are shown in Figure 3.2. 
For each channel, the 5-min iEEG epochs were divided into windows of 40 
samples, with 50% overlap. Three-pole AR models were estimated, thereby 
obtaining the residual signal variance (r) for each window. Preliminary 
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investigation in a part of the data (subjects 1, 2, 3, 4, 5, and 7) showed that a 
40 sample window length and model order 3 provided the best distinction 
between channels inside and channels outside the SOZ. High-frequency 
components of the EEG are presumably quantified with these parameters. 
Because of the 40-sample window length used, the lowest oscillatory 
frequency that can be modeled in this window, using a sampling frequency 
of 1000 Hz, is (1/40) ∗ 1000 = 25 Hz. Nonharmonicities in low frequencies 
therefore do not influence r.

The variation of r in time was quantified by calculating the coefficient of 
variation, providing an ARR value for each channel:
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FIGURE 3.2. 
The processing steps executed by the ARR algorithm. A) The iEEG epoch, which has a length of 160 
samples in this example, is divided into windows of 40 samples, with 50% overlap. B) Of each window, 
an order 3 AR model is estimated. C) The residual signal variation (r) in the window is obtained. D) ARR 
is calculated for the iEEG epoch, defined as the standard deviation of the r values from the epoch, divided 
by the mean of those r values. 



49AUTOMATED APPROXIMATION OF THE SEIZURE ONSET ZONE

3

.	 (3.2)

Here σ is the standard deviation and μ is the mean for the series of time 
windows. Using the coefficient of variation instead of the standard deviation 
provides normalization of values, thus allowing comparison of results 
between subjects.

STATISTICAL ANALYSIS

COMPARISON BETWEEN R AND TRL RESULTS

The TRL method and R technique are directly comparable; the association 
between them is a measure of the quality of the automated ripple 
quantification given the manual segmentation of ripples as gold standard. 
The R results from the iEEG of all channels were compared with TRL results, 
using the h2 index. This index provides a measure for the association 
between pairs of signals in general (linear or nonlinear) and information 
on the directionality of the association.38 We obtained the h2 index in two 
directions, to test the fraction of variation of R that can be explained by TRL, 
and vice versa; to test the fraction of variation of TRL that can be explained 
by R. This results in a value between 0 and 1, where h2(TRL,R) = 1 implies 
that all variation of TRL is explained by R. The findings are significant if h2 
exceeds the critical value, or significance margin, in a bootstrapped test with 
α = 0.05.38 

COMPARISON OF TRL, R, AND ARR RESULTS WITH THE SOZ

TRL, R and ARR results were compared with the SOZ, for each individual 
subject, and on group level, by calculating separability and detection 
performance. Separability, or the ability of each method to distinguish 
between signals from channels in the SOZ as opposed to those outside it, 
was assessed using a Kolmogorov-Smirnov test (K-S test). The K-S test was 
used in two ways: 1) to determine whether the distributions of the values 
from channels inside versus from outside the SOZ were distinctly different, 
and 2) to test the hypothesis that the values obtained from channels in the 
SOZ are higher than those obtained outside the SOZ (both calculations with 
α = 0.01).

The performance of TRL, R, and ARR at approximating the SOZ was 
determined using a receiver operating characteristic (ROC) curve, drawn 
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with sensitivity and specificity for various thresholds. The ROC’s area under 
the curve (AUC) represents algorithm performance. Sensitivity is defined 
as the proportion of SOZ channels which are correctly classified as such. 
Specificity is defined as the proportion of channels not in the SOZ which are 
correctly classified as such. A channel was classified as positive (i.e. being 
potentially in the SOZ) by one of the three methods, when its value exceeds a 
varying threshold. Otherwise, the channel is classified as negative according 
to that method. Performances were determined from the TRL, R, and ARR 
results per subject and at group level. In the latter case, all channels from all 
subjects are taken together.

Algorithm performance was also calculated separately for only the cases with 
good postoperative seizure control. Assuming that in those cases the SOZ as 
delineated by the gold standard contains the whole epileptogenic area, this 
analysis shows possible causal relationships between HFO generation and 
nonharmonic dynamics, and the processes of transitions to seizures.

ARR ALGORITHM PERFORMANCE AND SURGICAL OUTCOME

We also investigated whether surgical outcome can possibly explain the 
performance results of the ARR algorithm. For this purpose, ARR performance 
results are viewed in respect to surgical outcome of all subjects. Poorer 
performance of the ARR algorithm to approximate the SOZ can be caused 
by either false positives (FPs) or false negatives (FNs). ARR FPs occurring 
more in data from subjects with poor postoperative seizure control, could 
suggest that some of the electrodes corresponding to those FPs were actually 
situated in an epileptogenic area. This area could have been missed in the 
(gold standard) delineation of the SOZ, or the area could be outside the 
SOZ, while situated in the EZ. ARR FNs occurring in data from subjects with 
poor postoperative seizure control suggest that electrodes corresponding 
to those FNs were actually situated outside the epileptogenic area. It is 
therefore also informative to investigate whether diminished performance 
of the ARR algorithm is caused by FPs rather than FNs, or vice versa. This 
was done by comparing ARR values from subjects with good postoperative 
seizure control with ARR values from subjects with poor postoperative 
seizure control. This comparison is made separately for channels recorded 
from inside and outside the SOZ.

ARR PERFORMANCE AND ANTIEPILEPTIC DRUGS

Antiepileptic drug (AED) tapering is standard operating procedure to 
increase the chance of seizures during iEEG registration. The day of 
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registration after drug tapering differs between subjects (see Table 3.1), 
because the choice of stored interictal data was limited. We investigated 
whether the registration day of the used iEEG recording, reflecting the level 
of AED tapering, could explain performance results of the ARR algorithm.

RESULTS

TRL AND R RESULTS

TRL and R results are shown in scatterplots per subject in Figure 3.3. Results 
from h2 signal association analysis are shown in the boxes in each boxplot. 
The rising trends in the scatterplots, especially where TRL > 0, suggest 
that R and TRL values are correlated. This correspondence is not strictly 
monotonic, and some scatter is observed. The h2 index findings show 
significant signal association in both directions (R to TRL and TRL to R) 
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FIGURE 3.3. 
Scatterplots for each subject showing total ripple length (TRL) results versus rippleness algorithm (R) 
results, both logarithmically scaled. Each data point represents an individual channel. The h2 indexes 
are shown in the boxes, followed by an asterisk if the found association was significant (p < 0.05). On 
the x-axis is log(TRL + 1), so that when no ripples were found visually (TRL = 0), there is a datapoint at 
log(TRL+1) = 0.
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FIGURE 3.4. 
Distributions of A) TRL, B) R, and C) ARR values per channel inside versus outside the seizure onset 
zone. Only iEEG channels of the subjects with a good postoperative seizure control (subjects 1, 2, 4, 6–9) 
were used to obtain the distributions. Outliers are not shown.
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in the iEEG data from subjects 1, 2, 4, 5, 7, and 9. In data from subjects 3 
and 6, signal association was only significant in one direction (TRL to R 
and R to TRL, respectively). Signal association is thus not favored in one 
particular direction. In subject 8, signal association was not significant in 
either direction. When combining all R and TRL data points from the total 
dataset, h2(TRL,R) ≈ 0.99, and h2(R,TRL) ≈ 0.81 were found, both significant 
with p<0.01. 

TRL, R, AND ARR RESULTS IN RELATION TO THE SOZ
The distributions of TRL, R, and ARR values inside and outside the SOZ from 
individuals with good postoperative seizure control are shown in Figure 3.4. 
The applied K–S tests showed that TRL, R, and ARR values from inside and 
outside the SOZ have independent and distinctly different distributions (p 
< 0.01). Furthermore, the values for signals from channels in the SOZ were 
higher than values for the signals obtained from channels outside the SOZ 
for all three methods (p < 0.01).

The performance of TRL, R, and ARR at approximating the SOZ is provided 
per subject in Table 3.2. For all subjects except subject 3, ARR provides the 
highest ROC AUC. Performance of TRL, R, and ARR on group level with only 
data from subjects with good postoperative seizure control is shown in the 
ROC curves in Figure 3.5.

ARR PERFORMANCE AND SURGICAL OUTCOME
In Figure 3.6A, ARR performances are plotted against surgical outcome 
per subject. A declining trend can be observed for ARR performance with 
poorer surgical outcome. An increasing trend was seen for later registration 
days. Linear regression performed on both associations was not statistically 
significant.

In Figure 3.7, distributions of ARR values for channels outside the SOZ 
(according to the gold standard for SOZ delineation) are shown for good 
postoperative seizure control and poor postoperative seizure control. The 
shown distributions hold only alleged true negative and false positive 
findings. Distributions of ARR values for channels inside the SOZ hold only 
the alleged true positive and false negative findings (results not shown). 
Applying K–S tests on the results from channels outside the SOZ showed: 
separate distributions for good versus poor postoperative seizure control (p 
< 0.05), and significantly higher ARR values in subjects with poor surgical 
outcome than in subjects with good surgical outcome (p < 0.01). Applying 
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K-S tests on the results from channels inside the SOZ showed nonsignificant 
separation of distributions for good versus poor outcome, and ARR values 
were not significantly higher in subjects with good outcome compared to 
those in subjects with poor outcome. Thus, there are significantly more 
false positives, rather than false negatives, in the poor postoperative seizure 
control group than in the good postoperative seizure control group.

ARR PERFORMANCE AND ANTIEPILEPTIC DRUGS
In Figure 3.6B ARR algorithm performance is plotted against the 
registration day after medication lowering for each subject. A rising trend 
can be observed in the ARR results with increasing registration day. Linear 
regression performed on this data was not statistically significant.

DISCUSSION
The results from this study suggest that ARR, interpreted as evidence for 
nonharmonicity measured in short interictal epochs of iEEGs, may be 
used to automatically identify channels in the SOZ, a surrogate marker for 
the EZ, in people with temporal lobe epilepsy. The ARR algorithm more 
reliably identified the SOZ than the R algorithm and the TRL, although the 
difference in performance is smaller in the latter case. The findings in this 

Subject Surgical outcome 
(good/poor) TRL R ARR

1 UCLA IA (good) 0.88 0.60 0.92

2 UCLA IA (good) 0.78 0.66 0.81

3 UCLA III (poor) 0.87 0.48 0.70

4 UCLA II (good) 0.92 0.81 0.99

5 UCLA IV (poor) 0.71 0.53 0.84

6 UCLA IB (good) 0.79 0.46 0.94

7 UCLA II (good) 0.75 0.77 0.78

8 UCLA IB (good) 0.83 0.67 0.92

9 UCLA IA (good) 0.82 0.63 0.87

All 0.79 0.64 0.82

Only UCLA IA, IB, II 0.79 0.65 0.83

TABLE 3.2. 
Performance expressed in ROC AUC values per subject for the three classifiers. Group performance for 
all subjects and for the good postoperative seizure control group (UCLA IA, IB, II) are shown separately.
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3study also suggest correspondence between TRL and R values per channel, 
thus confirming results from our previous study.33 Therefore, the R measure 
can possibly be used for fast automated estimation of the TRL.

Three methods for reliable approximation of the SOZ - TRL, R, and ARR - 
were compared to the current gold standard for determining the SOZ. All 
three methods possess the ability to distinguish between signals obtained 
from channels in the SOZ and those from outside it. The ARR algorithm 
outperforms TRL and R in the extent to which the algorithm achieves correct 
classification of channels in the SOZ. Moreover, the ARR and R algorithms 
process a 5-min 1000 Hz sampled epoch of iEEG data rapidly (within a 
minute). They might therefore be used as an alternative to the current gold 
standard of SOZ determination (visual observation of ictal recordings from 
invasive video-EEG) and manual segmentation of HFOs, which are both 
very time consuming and can take several hours.

SURGICAL OUTCOME AND ARR RESULTS
ARR performance shows a declining trend with poorer surgical outcome. 
Linear regression was however not significant, possibly due to the small 
number of subjects. There are more false positives (rather than false 
negatives) in the poor outcome group than in the good outcome group. These 
results imply that diminished ARR algorithm performance with poorer 
surgical outcome is most likely due to false positives. Some of the channels 
corresponding to these false positives could actually be located in the EZ 
and could thus potentially be used for improvement of EZ localization.
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FIGURE 3.7. 
Distributions of ARR values for channels outside the SOZ, for good versus poor postoperative seizure 
control. Outliers are not shown.
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AED LEVELS AND ARR RESULTS

In the current study it was not possible to control for AED tapering, which 
could influence TRL, R, ARR, and even gold standard SOZ results.39,40 A 
rising trend can be observed in the ARR performance at later recording 
days, but it was not found to be statistically significant (possibly due of 
the limited number of subjects in this study). A similar rising trend was 
observed in the TRL results (results not shown). These findings could imply 
better agreement between the TRL and ARR algorithms and the SOZ when 
fewer AEDs or a lower concentration of them is used. HFOs have been 
found to be attenuated by AEDs,39 and evidence for the attenuation of the 
values measured with certain nonlinear quantifiers has also been found.40 
It could be that due to this attenuation, the difference between normal 
and epileptic brain areas, regarding HFOs and nonharmonicity, is smaller. 
If this hypothesis is correct, it would be advisable to quantify HFOs and 
nonharmonicity in an interictal iEEG epoch from a later registration day, 
when AED levels have decreased. The effect of AEDs on ARR results should 
therefore be further investigated.

EXAMINATION OF STUDY RESULTS
Because the AR model describes harmonic oscillators of given order that 
are stationary and linear, the ARR measures the nonharmonic component 
in the system dynamics. Typically the residual variance of the signal after 
AR fit is interpreted as noise, but in our application it can be reminiscent of 
the nonlinear or nonstationary dynamic patterns of the underlying system 
generating the signal.41 Assuming that the noisy component is always 
present, the intermittent generation of nonharmonic events such as ripples 
will cause variations in the r quantity, or the residual signal variation after 
AR modeling. Because to obtain an ARR value the coefficient of variation of 
r rather than the mean value per channel is calculated, we can assume that 
the noisy source of ARR has been largely suppressed. 

Various quantifiers, which characterize nonlinearity related to a single 
recording site, have been used for lateralization and localization of the 
EZ. Used quantifiers include neuronal complexity loss,25,42 correlation 
dimension,27,28 Lyapunov exponents,29 ξ,30 mean phase coherence,31 and 
relative phase clustering index (rPCI).32 The ARR algorithm provides global 
evidence of nonharmonicity of system dynamics, meaning that the specific 
type of nonlinearity or nonstationarity causing the high ARR values, is 
disregarded.
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One might argue that by focusing on the frequently appearing high residual 
values in EEG data, ARR actually detects interictal spikes, as previous 
research showed is possible.43,44 Because spikes were not quantified in this 
study, it cannot be confirmed whether this is the case or not. However, spikes 
are also often observed in channels outside the SOZ.13 The zone with HFOs 
often has a smaller spatial extent than the area of the cortex generating 
spikes.4 Results from this study suggest similar or better performance of 
ARR compared with manually segmented HFOs. Furthermore, it is noted 
by Lehnertz that certain nonlinear quantifiers of the EEG do not necessarily 
coincide with interictal discharges, but seem to coincide quite well with the 
EZ.45 It therefore seems unlikely that ARR locates spike-generating cortex 
rather than the SOZ. 

It was observed in the study data that in the signals from channels in the 
SOZ, the iEEG windows with high r values often coincide with HFOs. In 
signals from channels contralateral to a SOZ that showed evidence of HFOs, 
r values were not high in iEEG windows during HFOs. This is consistent with 
findings from preliminary investigation, where we found that HFOs from 
the SOZ had higher nonharmonicity (results not shown). We hypothesize 
therefore, that at least two properties are needed in order for a neuronal 
network to be prone to producing seizures, i.e. recurrent connections and 
evidence of nonharmonicity in its behavior. A combination of recurrent 
connections and nonharmonicity promotes a pathological oscillatory state, 
and thus increases the chance of seizure occurrence.

VALUE OF THE ARR METHOD
An advantage of the ARR algorithm is that it yields results rapidly, as 
opposed to visual observation of video-EEG, manual segmentation of HFOs, 
and some nonlinear time series analysis algorithms46 that are characterized 
by high computational complexity. Also, the algorithm’s findings are not 
sensitive to spurious, filter-induced oscillations, which can be mistaken for 
HFOs when manually segmenting those. 

ARR could potentially be used in combination with the current gold 
standard for delineation of the SOZ as an extra control during presurgical 
workup. Sub-optimal postoperative seizure control could, among other 
reasons, be caused by sub-optimal electrode placement or even a SOZ 
which is unidentifiable with the implantation method used.47 When the 
ARR findings and the SOZ as found by the current gold standard are not 
in agreement, this could suggest that poorer postoperative seizure control 
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might be expected. Combining ARR with the current gold standard for 
delineation of the SOZ could therefore be beneficial for presurgical workup.

STUDY LIMITATIONS
ARR results were compared with the current gold standard for delineating 
the SOZ, which is a surrogate marker for the EZ. Sub-optimal agreement 
of a new algorithm with an imperfect gold standard is possible, even if the 
algorithm performs its task well. False positives produced by any algorithm 
in light of the SOZ could in fact be true positives in light of the EZ. 

There were some false positive detections by ARR in data from subjects 
where the gold standard SOZ was in all probability correct, with good 
postoperative seizure control. When visually inspecting the EEG data from 
these channels, two explanations were found. Firstly, in some channels 
activity resembling continuous rippling can be observed. This continuous 
high-frequency activity has recently been found to be a physiological rather 
than pathological finding.48 Secondly, FPs could be caused by recurrent 
artefacts, the morphology of which could give rise to spuriously high residual 
values. Small numbers of artefacts are, however, unlikely to influence the CV 
used to obtain ARR; the artefacts would have to be recurrent to give rise 
to high ARR values. Additionally, channels with many artefacts are often 
excluded from EEG analysis, if the channels are unlikely to be located in the 
SOZ.

The choice of 5-min slow-wave sleep epochs of iEEG for analysis was 
based on findings regarding the stability of the HFO rate.15 Often only one 
short nightly interictal iEEG recording was stored, thus investigating ARR 
stationarity during the total registration, which often lasted a week, was not 
possible.

FUTURE WORK
Further investigations are justified by the promising results from the pilot 
test performed in this study. Validation of the ARR algorithm for its added 
value in the identification of the SOZ as well as in the delineation of the EZ is 
required. In such a validation study ARR findings should be compared with 
long term surgical outcome, as this is currently the only way to derive the EZ. 
Before performing such a validation study, a number of properties should be 
further investigated. 
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Firstly, optimization of the chosen length of the AR modeling window should 
be investigated. As mentioned in the methods section, the ARR algorithm 
possesses filtering capacities in accordance with the chosen window length. 
One could decrease the window length to focus on even higher frequencies 
(e.g. in the ripple, or even fast ripple range). In doing this, however, one is 
limited by the sampling frequency; the modeling window (40 samples in 
this study) must have sufficient samples to model the signal adequately.

Secondly, general stationarity of the measured EEG characteristic should 
be further investigated by comparing results from various registration 
nights and from various epoch lengths. That way the appropriate recording 
moment and length of an iEEG sample epoch can be determined. It is 
possible for example, that ARR values in SOZ channels increase when 
there is an increased chance of a seizure. AED concentration fluctuations 
during tapering and reintroduction may influence ARR results as well. 
Furthermore, the choice of a sample of slow-wave sleep as opposed to other 
epoch sampling methodologies in wakefulness as well as in sleep for ARR 
determination should be further studied. 
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TABLE 3.S1. 
Implanted intracranial electrodes per subject, and used abbreviations.

SUPPLEMENTARY MATERIALS

Subj Abbre-
viation Electrode location

1 AML Left amygdala

ATHCL Left anterior-temporal hippocampus

IAIL Left anterior insula

MTHCL Left mid-temporal hippocampus

IAPL Left insula anterior posterior

PT1L Left parieto-temporal

TPL Left temporal pole

FBR Right fronto-basal

AMR Right amygdala

ATHCR Right anterior-temporal hippocampus

IPAR Right insula posterior anterior

PT1R Right parieto-temporal

2 LesAntR Right lesion anterior

LesSupR Right lesion superior

LesAnIR Right lesion anterior insula

TPamR Right temporal pole amygdala

HCR Right hippocampus

FOrbR Right fronto-orbital

FPoIR Right fronto-polar insula

DLSMAR Right dorso-lateral supplementary motor area

LGCAnR Right lateral gyrus cinguli anterior

LGCMdR Right lateral gyrus cinguli medial

InsAntR Right insula anterior

3 FBL Left fronto-basal

HAL Left hippocampus anterior

FBR Right fronto-basal

AR Right amygdala

HAR Right hippocampus anterior

HPR Left hippocampus posterior

TBR Right temporo-basal

TPOR Right temporo-parietal-occipital
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IAIR Right insula anterior

IPIR Right insula posterior inferior

TOPAR Right temporal-occipital posterior amygdala

4 LFL Left lateral frontal

INL Left insula

HCL Left hippocampus

TOR Right temporo-occipital

FOR Right frontal operculum

LFR Right lateral frontal

INR Right insula 

MFR Right medial frontal

HCR Right hippocampus

5 PSMAL Left posterior supplementary motor area

FODL Left frontal operculum

PFL Left parietal frontal

FORBL Left fronto-orbital

TOL Left temporal operculum

HCL Left hippocampus

HCR Right hippocampus

PSMAR Right posterior supplementary motor area

6 FOL Left fronto-orbital

OFL Left frontal operculum

GCL Left gyrus cinguli

MFL Left medial frontal

OTL Left temporal operculum

HCL Left hippocampus

AML Left amygdala

OFR Right frontal operculum

MFR Left medial frontal

HCR Right hippocampus

7 LFL Left lateral frontal

MHL Left medial hippocampus

IAR Right insula anterior

IPR Right insula posterior

IIR Right insula inferior

FCR Right frontal cingular

ATR Right anterior temporal
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AHR Right anterior hippocampus

MHR Right medial hippocampus

PHR Right posterior hippocampus

FBR Right fronto-basal

TPOR Right temporo-parieto-occipital

8 HippL Left hippocampus

FrInsR Right frontal insula

Peril Peri lesional

FrOrbR Right fronto-orbital

Antgr Anterior grid

Postgr Posterior grid

HippR Right hippocampus

9 FBL Left fronto-basal

TPL Left temporal pole

HC1L Left hippocampus

HC2L Left hippocampus

AML Left amygdala

IAL Left insula anterior

TBL Left temporo-basal

TPOL Left temporo-parieto-occipital

S2PIL Left posterior insula

MIL Left mid-insula

FBR Right fronto-basal

TPR Right temporal pole 

HC1R Right hippocampus

TBR Right temporo-basal

TPOR Right temporo-parieto-occipital
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ABSTRACT

OBJECTIVE

We aimed to test the potential of auto-regressive model residual modulation 
(ARRm), an artefact-insensitive method based on non-harmonicity of the 
high-frequency signal, to identify epileptogenic tissue during surgery.

METHODS
Intra-operative electrocorticography (ECoG) of 54 patients with refractory 
focal epilepsy were recorded pre- and post-resection, sampled at 2048 Hz. 
The ARRm was calculated in one-minute epochs in which high-frequency 
oscillations (HFOs; fast ripples, 250–500 Hz; ripples, 80–250 Hz) and 
spikes were marked. We investigated the pre-resection fraction of HFOs and 
spikes explained by the ARRm (h2-index). A general ARRm threshold was 
set and used to compare the ARRm to surgical outcome in post-resection 
ECoG (Pearson X2).

RESULTS
ARRm was associated strongest with the number of fast ripples in pre-
resection ECoG (h2 = 0.80, P<0.01), but also with ripples and spikes. An 
ARRm threshold of 0.47 yielded high specificity (95%) with 52% sensitivity 
for channels with fast ripples. ARRm values >0.47 were associated with poor 
outcome at channel and patient level (both P<0.01) in post-resection ECoG. 
High ARRm results post-resection had a positive predictive value of 88.9% 
for poor outcome, including in patients without fast ripples.

CONCLUSIONS
The ARRm algorithm might enable intra-operative delineation of 
epileptogenic tissue. ARRm is the first unsupervised real-time analysis that 
could provide an intra-operative, ‘on demand’ interpretation per electrode 
about the need to remove underlying tissue to optimize the chance of seizure 
freedom.



69AUTOMATED DELINEATION OF EPILEPTOGENIC TISSUE

4

INTRODUCTION
Epilepsy is a dynamic condition as seizures occur intermittently and in most 
cases unexpectedly. This suggests that the underlying processes responsible 
for the generation and cessation of seizures are non-harmonic, i.e. non-linear 
and non-stationary. A high level of non-linearity in the system is needed to 
initiate seizures.1 The epileptiform EEG contains several biomarkers which 
all have a strong non-linear component.2,3 This holds true for epileptiform 
inter-ictal spikes, for the recently discovered high-frequency oscillations 
(HFOs; >80 Hz) and for seizures themselves. All these events appear without 
notice.4–6

During epilepsy surgery there is need for biomarkers to delineate the 
epileptogenic tissue that should be resected to assure seizure freedom 
after surgery. Even in the presence of an epileptogenic lesion on MRI the 
resection boundaries are not always clear, e.g. in cases of neuronal tumors, 
in which the epileptogenic zone may extend beyond the lesion, or when 
the hippocampus is secondarily affected.7 Epilepsy surgery can be tailored 
by identifying spikes in the intra-operative electrocorticogram (ECoG), 
but this method is controversial.8,9 Surgical removal of cortex showing fast 
ripples, between 250 and 500 Hz, has been associated with post-operative 
seizure freedom.9,10 HFOs probably result from hyper synchronous, out-of-
phase firing of groups of principal neurons,11 and might be more local to the 
epileptogenic tissue than spikes.11,12 It may thus be better for the tailoring of 
epilepsy surgery with ECoG to rely on HFOs, especially fast ripples, rather 
than on the currently used spikes.9

Visual analysis of HFOs is time consuming and requires the presence of 
expert reviewers during surgery.13 The time available to record and analyze 
HFOs is limited, and HFO occurrence is infrequent, so they can easily be 
missed.9,14 Automatic detectors have been developed, but most still require 
extensive computing time,12,15–21 making these techniques unsuitable for use 
in the time frame of surgery. Additionally, it can be difficult to distinguish 
pathological HFOs from physiological high-frequency activity. High-
frequency physiological activity probably shows a harmonic pattern.22 It can 
also be difficult to distinguish HFOs from artefacts, while artefact sources, 
such as the diathermy and the surgical microscope, are ubiquitous in the 
surgical theatre.23 Also, detection software for clinical use in the operating 
theatre needs to function near real-time, since prolonged surgery is associated 
with increased complication risks.24 Analysis of non-harmonicity in high-
frequency components of the EEG signal, recorded at a high sampling rate 
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>2000 Hz, may provide an automated and objective solution that solves 
these issues.

The auto-regressive model residual modulation (ARRm) can be used 
to predict which intracranial EEG channels are within the presumed 
epileptogenic area.25 We developed the ARRm algorithm to identify ‘bad’ 
channels. The ARRm reflects the amount of non-harmonicity in the high-
frequency components of the signal, in terms of high residual signal variation 
after autoregressive modelling. The ARRm can be computed rapidly and 
only requires short epochs of EEG and thereby seems to lend itself to online 
analysis during surgery.25 We adjusted the ARRm algorithm to reduce the 
influence of typical intra-operative ECoG artefacts; artefacts may produce 
spuriously large residual signal variations, resulting in false positive high 
ARRm values unrelated to the epileptic tissue. We focused on the rejection 
of subtle short-lasting electrode and movement artefacts, as these are the 
most difficult to identify.

We aimed to test the potential of the new ARRm algorithm to identify 
epileptogenic tissue during surgery. Therefore, we compared the ARRm 
to the occurrence of fast ripples, ripples and spikes in pre-resection intra-
operative ECoG, and studied the relationship between ARRm results in 
post-resection ECoG and post- surgical outcome.

METHODS

ECOG DATABASE

PATIENTS

The database consisted of intra-operative ECoG recordings, before and after 
resection, of patients with refractory focal epilepsy who underwent tailored 
epilepsy surgery between 2008 and 2012 at the UMC Utrecht. General 
anesthesia was induced using a combination of propofol and a synthetic 
opioid and maintained using a target-controlled propofol infusion pump. 
The surgical strategy was based on the results of presurgical diagnostics (e.g. 
MRI, PET, MEG, video-EEG) together with intra-operative tailoring based 
on inter-ictal spikes and spike patterns, using conventional EEG settings (70 
Hz low pass filter, 10 s/page) in a common average reference montage. HFOs 
were never analyzed during surgery. The database was collected according to 
the guidelines of the institutional ethical committee of the UMC Utrecht, The 
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Netherlands. The institutional ethical committee approved the study and 
waived the need for written informed consent because of the retrospective 
character, provided that data were coded and handled anonymously. 

The database was constructed based on the inclusion and exclusion criteria 
as described in a previous study.9 We included 54 patients (median age 
15.5 years, 29 male, 30 right-sided surgeries) with a median follow-up after 
surgery of 25 months (range 17.0–35.8 months). The resection area was 
temporal in thirty-three patients, frontal in twelve, peri-central in seven, 
and parietal and occipital each in one patient. Pathology was classified 
in four groups; mesial temporal sclerosis (MTS, N = 8), tumors with glial 
components (including gangliomas and dysembryoplastic neuroepithelial 
tumors (DNET); N = 23), malformations of cortical development (e.g. focal 
cortical dysplasia (FCD) and tuberous sclerosis; N = 15) and other pathologies 
(e.g. cavernomas and gliosis; N = 8). Thirty patients (56%) became seizure 
free after surgery (Engel 1A).26 This postsurgical outcome was determined 
for the most recent follow-up with a minimum of one year. 

ECOG RECORDINGS

Intra-operative ECoG recordings were made with a 64-channel EEG system 
(MicroMed, Veneto, Italy) at 2048 Hz sampling rate using an anti-aliasing 
filter at 538 Hz. We used 4x5 or 4x8 electrode grids and 1x6 or 1x8 electrode 
strips (Ad-Tech, Racine, WI). The platinum electrodes are embedded in 
silicone with a 4.2 mm2 contact surface and 1 cm inter-electrode distance. 
Grids and strips were placed in multiple configurations before (preresection 
ECoG), during extension of the resection, and after resection (post-resection 
ECoG). Propofol anesthesia was stopped during ECoG registration until a 
continuous ECoG background pattern was achieved. The anesthesiologist 
monitors the patient’s heart rate and blood pressure closely, restarting the 
propofol before the patient starts to wake up. To minimize propofol effects 
we selected the last minute of each pre- and post-resection recording for 
analysis; on average this was 11 min after propofol was stopped. Analysis 
was performed on bipolar electrode pairs lengthwise on the grids. Bipolar 
channels with continuous artefacts that were visible in the raw ECoG signal 
were excluded. 

MARKING OF HFOS AND SPIKES

We used an automated detector previously developed, adapted for our 
intra-operative ECoG, to detect HFOs.16 The detector uses a high pass 
finite impulse response (FIR) filter >80 Hz for ripples and >250 Hz for fast 
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ripples.14,16 Subsequently, visual post-processing of the data and the HFO 
detections in Stellate Harmonie Reviewer (v7.0, Montreal, QC, Canada) 
was done in consensus by two of three reviewers (MvtK/MZ/NvK) to correct 
for artefacts, and falsely identified or missed HFOs. A split screen was 
used to visualize ripples (gain 5 µV/mm) and fast ripples (gain 1 µV/mm) 
simultaneously at an elongated time interval of 0.4 s/page and the same 
filter settings as mentioned above.4 Spikes were visually marked (MvtK) in 
the same bipolar montage, using conventional infinite impulse response 
(IIR) filter settings of 0.5–70 Hz at a gain of 75–200 µV/mm and 10 s/page. 
Marked spikes were checked by a clinical neurophysiologist (FL). Spikes 
were defined as paroxysmal sharp transients, with a maximum duration of 
80 ms27 and minimum amplitude of twice the baseline. Sharp waves co-
occurring with spikes on other bipolar channels were also marked. HFOs 
were marked independently and blinded for spikes and vice versa. All events 
were marked blinded for outcome. 

AUTOREGRESSIVE RESIDUAL MODULATION

ORIGINAL AUTOREGRESSIVE RESIDUAL MODULATION

We used the original autoregressive model residual modulation (ARRmorig) 
algorithm, as previously described.25 The ARRmorig algorithm quantifies the 
variance of residual signal variation (r) after modelling short windows of 
ECoG data using autoregressive models with model order 3. High ARRm 
values represent the intermittent occurrence of non-harmonicity in the 
ECoG signal. The window length was 40 samples, approximately 20 ms of 
ECoG data, and consecutive windows with 50% overlap were chosen. The 
algorithm quantifies the high-frequency components of the EEG signal, as 
frequencies below 50 Hz cannot be modelled within a 40 sample window. 
These signal components therefore do not influence the residual signal 
variation.

IMPROVED AUTOREGRESSIVE RESIDUAL MODULATION

Artefacts may produce spuriously large residual signal variations, which 
result in false positive high ARRm values unrelated to the epileptic tissue. 
We modified the ARRm algorithm to be less sensitive to subtle artefacts 
than the original ARRmorig algorithm. Artefacts can be roughly classified 
into two groups; (1) gross artefacts, which can be observed in the unfiltered 
ECoG, e.g. from electrode movement, or lack of contact with tissue. Such 
artefacts are easy to recognize and may be prevented by careful recording. 
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(2) Subtle short-lasting artefacts may result from electrical interference, 
touching the electrode or short electrode problems and have a very small 
amplitude. These artefacts can be short and sharp, resulting in a strong non-
linear component, and thus greatly influence the ARRm. 

A preliminary study on a learning set showed that these artefacts differ 
from HFOs when looking at residuals from different autoregressive model 
orders. The learning set consisted of twelve 5-s ECoG epochs from seven 
patients chosen from the preresection ECoG dataset. We included examples 
of artefacts, spikes and HFOs, and data without such events, but cases 
were otherwise chosen randomly. We observed that r-values stayed high 
for increasing model orders in windows containing artefacts. Windows 
containing true events, however, showed r-values declining much faster for 
increasing model orders. The difference between artefacts and HFOs was 
largest when looking at the steepness of r decline from the first to the second 
order (r1 to r2). The decline of r over an increasing model order was used to 
reject high r3-values resulting from artefacts. Using the same learning set, an 
appropriate decline threshold for the ARRm algorithm was chosen. Figure 
4.1 illustrates the artefact rejection method used in the ARRm algorithm.

ECoG epochs are evaluated per bipolar channel to provide an ARRm 
value. First, second and third order AR models were estimated, thereby 
obtaining residual signal variance time series (r1, r2 and r3) with values for 
each 40-sample window. Residual decline (D) over order one and two was 
calculated for each window (w), as follows:

 .	 (4.1)

Outliers in r3, i.e. exceeding the 95th percentile, and its two circumjacent r3 
samples, were removed from the r3 time series if the outlier window meets 
the condition D<0.9. This provides us with a collection of ‘cleaned’ windows 
(wc).

Subsequently, the improved autoregressive residual modulation ARRm can 
be calculated, using only the clean windows:

 ,	 (4.2)

where σ is the standard deviation and μ is the mean.



74 CHAPTER 4PART 2

A

D

B C

ECoG

r3
rc

r1
r2
r3

r1
r2
r3

re
sid

ua
l s

ig
na

l v
ar

ia
�o

n
re

sid
ua

l s
ig

na
l v

ar
ia

�o
n

re
sid

ua
l s

ig
na

l v
ar

ia
�o

n

am
pl

itu
de

 (μ
V)

200 400 600 800 1000 1200
samples

S
↓

FR
↓

R
↓

A
↓

FR
↓

S
↓

R
↓

A
↓

A
↓

FR
↓

R
↓

S
↓

window number window number

window number

2.

2.1.

1.

2.1.

5 10 15

100 20 30 40 50 60

454035

200

0

400

-200

-400

2000

1500

1000

500

0

40

60

20

0

40

60

20

0

FIGURE 4.1. 
Illustration of the artefact rejection method in the ARRm algorithm. A) ECoG raw signal (1200 samples 
= 0.6 s). Box 1 holds a spike (S), a ripple (R) and a fast ripple (FR), whereas box 2 holds an artefact 
(A). Arrows indicate the timing of these events. B) Residual signal variations (r) calculated using 
autoregressive model order 1, 2 and 3, from the ECoG segment in box 1, containing S, R and FR events. 
The r-values are high for events for all three orders, but the r-value declines steeply when the model 
order increases. C) r-Values for model order 1, 2 and 3 from the ECoG segment including the artefact in 
box 2. During this artefact, the r-values are high for all three orders; there is no steep decline of r-values 
when the model order increases. D) r3-Values that exceed the 95th percentile of the epoch, and have a 
small r1-to-r2 decline, or modulation, are rejected. Shown are the r-values from model order 3 (r3) and the 
resulting clean r3 time series (rc). For visualization purposes, the rejected values are shown here as zeros; 
in reality they are removed from the r3 time series.
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STATISTICAL ANALYSIS

ARRMORIG AND ARRM VALIDATION IN PRE-RESECTION DATA

The ARRmorig and ARRm results from the ECoG data recorded pre-resection 
were compared on a channel level with spike, ripple, and fast ripple counts, 
using the h2 index. The h2 index is a measure of the association between 
pairs of data in general (linear or non-linear).28 We obtained the h2 index to 
test the fraction of variation of ARRmorig and ARRm that can be explained by 
the number of spikes, ripples and fast ripples. This results in a value between 
0 and 1, where h2(A,B) = 1 implies that all variation of A is explained by B. 
The h2 findings are significant if h2 exceeds the critical value, or significance 
margin, in a bootstrapped test with a = 0.05. We evaluated the ability of 
ARRmorig and ARRm to correctly classify channels with (+) and without (-) 
spikes, ripples or fast ripples. ROC curves for all event types were obtained 
using the sensitivity and specificity for various ARRmorig or ARRm thresholds 
at channel level. The ROC curve for fast ripples – the most specific biomarker 
for epileptogenic tissue – provided a clinical threshold. This threshold was 
used for comparison of ARRm results in postresection ECoG and surgical 
outcome. For this analysis we dichotomized the ARRm results into channels 
with values above (ARRm+) and below (ARRm-) the determined threshold.

RELATIONSHIP OF ARRM TO OUTCOME IN POST-RESECTION DATA

In contrast to the rejected subtle artefacts, gross artefacts may be prevented 
during registration and can be easily observed in the unfiltered ECoG. We, 
therefore, visually checked the data for an explanation of the ARRm+ value 
in that specific channel. We removed channels with gross artefacts causing 
ARRm+ results from the post-resection data analysis. 

We investigated the spatial distribution of fast ripples and ARRm values in 
relation to resection and outcome in three patient groups. Group classification 
was based on the presence of fast ripples and ARRm+ in any of the ECoG 
channels. Group a) contains patients who had fast ripples and ARRm+. This 
group was studied to confirm overlap of the channels that identified the 
epileptogenic area. Group b) contains patients with fast ripples but ARRm-. 
This group is used to see whether ARRm is less susceptible to false positives 
due to physiological fast ripples. Group c) contains patients without fast 
ripples but ARRm+. In this group we studied if the ARRm identifies new 
patients with poor prognosis who were missed by identification with fast 
ripples.
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OUTCOME PREDICTION BASED ON ARRM

We performed statistical analysis of the ARRm results at channel level and 
maximal ARRm value at patient level in comparison to outcome (Mann–
Whitney U test). We did this for the dichotomized ARRm results based on 
the clinical threshold as determined on pre-resection ECoG data (Pearson 
X2-test or Fisher exact-test). We stratified for the presence and absence of fast 
ripples, ripples and spikes both at patient and channel level. We calculated 
the sensitivity, specificity, positive predictive value (PPV) and negative 
predictive value (NPV) of the maximal ARRm value for poor outcome.

Computation of the ARRm results and h2 association index was performed 
in Matlab (version 8.5.0; The MathWorks Inc., Natick, MA, USA). Statistical 
analysis was performed in IBM SPSS Statistics 21 (IBM Corp, Armonk, 
NY, USA). We considered a P-value <0.05 significant. Illustrations were 
constructed using Matlab and Adobe Illustrator (CS6).

RESULTS

DATA

All 54 patients in our database of intra-operative ECoG recordings were 
included in the analysis. We included all 2744 bipolar channels of the pre-
resection recordings, resulting in a median (inter quartile range, IQR) of 
41.0 (36.0–63.5) channels per patient for pre-ECoG. For the post-resection 
ECoG we included 1291 of 1325 bipolar channels, resulting in a median (IQR) 
of 18.5 (range: 15.0–29.0) channels per patient after resection.

ARTEFACT REJECTION
Figure 4.2 shows the effect of several artefact types on ARRmorig and 
ARRm. Glitches, which are commonly appearing subtle artefacts that have 
a substantial effect on ARRmorig, are successfully rejected (Figure 4.2A). 
Several other gross artefact types are also shown, which are not rejected by 
ARRm. Figure 4.3 illustrates the effect of artefact rejection on channel level, 
considering the presence of fast ripples. The majority of FR- channels get 
lower ARRm values than their corresponding ARRmorig values, while FR+ 
channels keep similar values. This indicates successful rejection of high-
impact artefacts.
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FIGURE 4.2. 
Example of common subtle and gross artefacts in the intra-operative ECoG and accompanying ARRmorig 
and ARRm value. A) Subtle intermittent glitches are one of the most common artefacts in intra-operative 
ECoG data and are barely visible in the raw data signal. They do not hamper visual analysis of spikes, 
but may cause spurious artefacts in the higher frequency ranges, and can be easily mistaken for HFOs. 
The ARRm algorithm, unlike the ARRmorig, was successfully designed to reject this type of artefact. B) 
Sudden onset or waxing and waning high frequency noise on individual channels can cause undesirably 
high ARRmorig as well as ARRm values. This subtle artefact is also difficult to spot in the raw signal. C) 
Typical gross artefact on one electrode due to interference of the surgeon touching the grid. D) Example 
of a floating channel that does not touch the brain surface and picks up noise, especially visible in the 
higher frequency ranges. This often occurs for electrodes on corner of grids or the last electrode of a strip. 
Note that in B), C) and D) the ARRm value was substantially lower compared to the ARRmorig value, 
as some artefacts in these signals might have fulfilled the rejection criteria. None of the here depicted 
channels showed fast ripples.
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ARRMORIG AND ARRM VALIDATION IN PRE-RESECTION 
DATA

COMPARISON OF ARRMORIG AND ARRM TO HFOS AND SPIKES IN 
PRERESECTION DATA

The ARRmorig and ARRm results from the ECoG data recorded pre-resection 
were compared on a channel level with spike, ripple, and fast ripple counts. 
In Figure 4.4, the results of the six comparisons are shown, together with 
the resulting h2 values reflecting the amount of association. ARRm showed 
particularly low values for channels which had high ARRmorig values but no 
fast ripples, showing that the artefact rejection was successful (see Figure 
4.4C and F and Figure 4.3). All h2 associations between ARRmorig and spikes, 
ripples, or fast ripples were significant (P<0.01), as well as for ARRm (P<0.01). 
Thus ARRmorig and ARRm variation may be explained by the quantity of 
events, where associations were strongest for fast ripples. ARRm was better 
associated with fast ripples than ARRmorig.

ARRMORIG AND ARRM AS EVENT CHANNEL CLASSIFIERS

We investigated the ability of ARRmorig and ARRm to correctly classify 
channels with and without spikes, ripples or fast ripples. The boxplot 
and ROC curve illustrating the FR+/- channel classification ability of 
ARRmorig and ARRm are shown in Figure 4.5. Best performance is found 
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FIGURE 4.3. 
Scatterplot of ARRmorig values vs. ARRm values, where each data point corresponds to one channel. 
Circles correspond to fast ripple negative channels (FR-), where no fast ripples were scored visually. 
Asterisks correspond to fast ripple positive channels (FR+), where one or more fast ripples were scored 
visually. Both axes are scaled logarithmically.
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FIGURE 4.4. 
Scatter density plots of ARRmorig (panels A, B and C) and ARRm (panels D, E and F) results from the 
ECoG data recorded pre-resection, compared on a channel level with spike (S), ripple (R), and fast ripple 
(FR) counts. Both axes are scaled logarithmically. Note that 0.1 is added to all event counts (x-axis) for 
visualization purposes, for log(0) = 1. Thus, a data point at -2.3 on the x-axis corresponds to zero events 
to have been scored on a channel. h2 association between the compared results is shown in the boxes 
next to the figures (*P<0.05 was considered significant). ARRm showed particularly low values for 
channels which had very high ARRmorig values but no fast ripples, showing that the artefact rejection was 
successful (see Figure 4.4C and F and Figure 4.3).
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for classification of FR+ and FR- channels with a ROC area under the curve 
(AUC) of 0.83 for ARRmorig and 0.88 for ARRm. For spikes the AUC values 
were 0.70 and 0.76, and for ripples 0.70 and 0.78 for ARRmorig and ARRm, 
respectively. ARRm performance exceeds ARRmorig performance for all event 
types, which implies successful artefact reduction. 100% specificity for FR- 
channels could not be obtained with any threshold for ARRmorig - there were 
many FR- channels with high ARRmorig values - but was possible for ARRm 
(see Figure 4.4C and F). Since the ARRm outperforms the ARRmorig, we used 
the ARRm algorithm throughout the rest of the study.

ARRM CLINICAL THRESHOLD

A threshold is needed to use ARRm as a classifier to find channels located 
in epileptogenic tissue. We chose this threshold favoring specificity; if a low 
ARRm value is measured, nonepileptogenicity of the tissue at that location 
should be concluded with as much certainty as possible. Therefore the 
95% specificity point, ARRm >0.47 (corresponding to 52% sensitivity), was 
chosen as the ARRm threshold to define a channel as suspect, i.e. likely to be 
located on epileptogenic tissue.
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FIGURE 4.5. 
Performance of ARRmorig and ARRm in pre-resection ECoG. Boxplot (A) and receiver operating 
characteristic (ROC) curve (B) illustrating the ability of ARRmorig (in blue) and ARRm (in green) to 
classify channels negative or positive for fast ripples. The FR- group contains channels without marked 
fast ripples and the FR+ group contains channels in which one or more fast ripples were marked. Outliers 
are not shown in the boxplots. The calculated ROC area under the curve (AUC) values for ARRmorig and 
ARRm are indicated in textboxes in the figure.
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ARRM COMPARED TO POST-SURGICAL OUTCOME

ARRM IN RELATION TO FAST RIPPLES IN POST-RESECTION ECOG AND 
CLINICAL DECISIONS

We investigated the spatial extent of residual fast ripples and the ARRm 
results in post-resection ECoG in relation to outcome (Table 4.1). An 
illustrative patient example with overlapping fast ripple and ARRm results 
is shown in Figure 4.6. We dichotomized the ARRm results at channel level 
based on the above mentioned threshold. We found six patients who had 
both fast ripples and ARRm+ channels (group A) in the same locations, all 
had recurrent seizures. Five patients had fast ripples but didn’t show ARRm+ 
channels (group B). This group contains three seizure-free patients with fast 
ripples after resection. Patient 3, for example, showed fast ripples in Broca’s 

Channel level (N = 1291)
ARRm

Patient level (N = 54)
Max ARRm

 >0.47 <0.47 P-value >0.47 <0.47 P-value

# Counts 27 1264 9 45

# Outcome 
(Poor/Good) 26/1 518/746 <0.01* (a) 8/1 16/29 <0.01* (a)

ECoG events 

FRs+
(Poor/Good)

20
(20/0)

32
(18/14) <0.01* (b) 6

(6/0)
6
(3/3) 0.18 (b)

FRs-
(Poor/Good)

7
(6/1)

1232
(500/732) 0.02* (b) 3

(2/1)
39
(13/26) 0.29 (b)

R+
(Poor/Good)

27
(26/1)

751
(324/427) <0.01* (a) 9

(8/1)
42
(16/26) <0.01* (b)

R-
(Poor/Good)

0
(0/0)

513
(194/319) n.a. 0

(0/0)
3
(0/3) n.a.

S+
(Poor/Good)

26
(25/1)

468 
(225/243) <0.01* (a) 8

(7/1)
30
(19/11) <0.01* (b)

S-
(Poor/Good)

1
(1/0)

796
(293/503) 0.37 (b) 1

(1/0)
15
(5/10) 0.38 (b)

Abbreviations: Poor - recurrent seizures (Engel Ic-IV), Good - seizure freedom (Engel Ia,b), 
a - Pearson X2-test, b - Fisher exact-test, n.a. - not available, * P-value <0.05 considered 
significant. Note that the FR- group contains channels or patients without marked fast 
ripples, while the FR+ group contains channels or patients in which one or more fast 
ripples were marked, and similar for ripples (R+/R-) and spikes (S+/S-) .

TABLE 4.1. 
Performance of ARRm in predicting surgical outcome, based on results in post-resection ECoG.
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FIGURE 4.6. 
Patient example with ARRm results. A) A patient with a neocortical epileptogenic lesion in the right 
central cortex that was resected. Additionally multi subpial transections were performed (poor 
outcome). Pathology revealed a mild organisational disorder of the cortex. B) Post-resection recordings 
showed multiple channels with spikes, but since this was an eloquent area, it was decided not to resect 
more tissue. However, in only few channels ARRm was elevated, similar to channels with fast ripples 
(*). C1) Ten seconds of raw unfiltered intra-operative ECoG as recorded. Note that the ARRm results are 
calculated on this raw signal, while for marking of HFOs the signal has to be filtered. C2) A close-up of 
the ECoG high-pass filtered at 250 Hz high-pass, showing fast ripples (*).
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FIGURE 4.7. 
Patient example with ARRm results. A) A patient with a right neocortical temporal epileptogenic lesion 
that was resected (poor outcome). Pathology revealed a ganglioglioma WHO grade II. B) Post-resection 
recordings showed spikes and ripples, in the anterior temporal area, but no fast ripples (FR). The ARRm 
was elevated in 4 channels. C1) Segment of raw unfiltered intra-operative ECoG as recorded. In the grey 
box, an event can be observed. This event was initially marked as an artefact. C2) 250 Hz high-pass 
filtered ECoG data from the grey box in panel C1, showing fast activity that could be classified as fast 
ripples. If this is the case, the four channels with high ARRm values should be associated with paroxysmal 
events. These events were then wrongly discarded during visual HFO marking, and the channels falsely 
classified as fast ripple negative.
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area and the central motor area, which we believe represent physiological 
fast ripples. This suggests the ARRm might be insensitive to physiological 
fast ripples. On the other hand, there were three patients with fast ripples 
and poor outcome but without ARRm+ results. Although the channels with 
fast ripples exhibited the highest ARRm values when ranked, these values did 
not exceed the predefined threshold. Three patients had ARRm+ channels 
but did not show residual fast ripples (group C). Two of these patients had 
poor outcome. In one patient with recurrent seizures the ARRm+ channels 
overlapped with an event that was incorrectly discarded as artefact during 
visual analysis (see Figure 4.7).

OUTCOME PREDICTION WITH ARRM

The ARRm at channel level and the maximal ARRm value at patient level 
are both indicators of poor outcome if the value is above 0.47 (both P<0.01, 
Pearson X2 test; Table 4.1). A maximal ARRm >0.47 predicted poor outcome 
with a sensitivity of 33.3%, a specificity of 96.7% and had a PPV of 88.9% and 
a corresponding NPV = 64.4%. When stratified for the presence or absence 
of fast ripples, ripples and spikes, the ARRm performs better at channel level 
than at patient level. Remarkably, even in the absence of fast ripples (FR-) at 
channel level, the ARRm >0.47 is an indicator of poor post-surgical outcome 
(P = 0.02, Fisher exact; Table 4.1).

DISCUSSION
The autoregressive model residual modulation (ARRm) algorithm provides 
a meaningful tool for intra-operative delineation of the epileptogenic zone. 
The algorithm is inspired by the most characteristic aspect of epilepsy; 
its unpredictable nature. In the ECoG ARRm is a ‘bad’ channel identifier 
rather than an event detector such as HFO detectors. We adjusted the ARRm 
to become less sensitive to subtle but influential artefacts in the intra-
operative ECoG. We showed that brain tissue producing signals with high 
non-harmonicity corresponds to areas producing fast ripples, and to a lesser 
extent to ripples and spikes. High ARRm results post-resection had a positive 
predictive value of 88.9% for poor outcome, including in patients without 
fast ripples. The ARRm calculated from interictal post-resection ECoG 
could be an equally good or even better indicator of post-surgical outcome 
than residual fast ripples, provided that gross peri-surgical artefacts are 
prevented during recording. We believe that the ARRm algorithm has the 
potential to replace visual HFO analysis for tailoring of epilepsy surgery, as 
it can be quickly calculated and thus used in real-time during surgery.
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AUTOMATED EPILEPTOGENIC ZONE LOCALIZATION IN 
LITERATURE

For decades, researchers have focused on the challenge of identifying 
automatically the precise location of the epileptogenic zone, by quantifying 
various signal aspects in the intracranial EEG.29,30 The recent discovery of HFOs 
has inspired researchers to develop new algorithms for localisation.15,21,31,32 
The overall reported sensitivity of HFO detection algorithms varies between 
50% and 100%, and the specificity ranges between 36% and 90%.32 A 
drawback of the majority of HFO detectors is false positive detections, due 
to artefacts that are mistaken for HFOs or physiological high-frequency 
activity, with false discovery rates reported as low as 13% but as high as 
75%.17,32 The ability of non-linearity quantifiers to localize the epileptogenic 
zone in brain signals has been extensively studied.33–37 Despite promising 
correlations between resection areas identified by such quantifiers and 
postsurgical seizure freedom,37,38 many of these algorithms are unsuitable 
for automated online analysis during surgery, as measurements with an 
extensive duration are needed for reliable calculations. One of the strengths 
of the ARRm algorithm is that calculations are very fast with virtually no 
delay, as the relatively simple calculations are performed on short unfiltered 
raw ECoG segments, instead of detecting separate events. Therefore, the 
algorithm could be used real-time during surgery.

NON-HARMONICITY

Traditionally, residual signal variance after an autoregressive fit is regarded as 
noise, but in our application it indicates nonharmonic characteristics, i.e. the 
nonlinear or non-stationary dynamics of the underlying system generating 
the signal. The main assumption underlying ARRm methodology is that 
epileptic HFOs are, in contrast to physiological high-frequency activity, of 
the non-harmonic type. In other words, they cannot be well described as 
solutions of a linear differential equation of a certain order.25 Quantification 
of the variance of residual signal variation in the higher frequencies is thus 
used to delineate epileptogenic tissue. Previously autoregressive fitting 
was used to quantify interictal spiking.29,39 One might argue that focusing 
on high values of the residuals in the ECoG data, which is essentially what 
the ARR algorithm does, is just another way of detecting interictal spikes, 
with or without HFOs on top. Our results suggest that the ARRm is more 
a reflection of liability towards, rather than an indicator of, epileptiform 
transients measured on the electrodes. We see that not every electrode with 
spikes has a high ARRm value. Spikes are not necessarily associated with 
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nonlinear quantifiers, but nonlinear quantifiers coincide quite well with the 
epileptogenic zone.40

Our results give rise to the question if the ARRm algorithm would give the 
same results on epochs without interictal events. This was suggested by a 
study in which the authors found tissue epileptogenicity by studying signal 
properties of very short (1-2 s) epochs that did not exhibit interictal events.41 
This should be studied further.

PATHOPHYSIOLOGY
A common difficulty in working with HFOs is the inability to distinguish 
physiological from pathological HFOs. Physiological HFOs may arise as a 
consequence of synchronous interneuron-mediated inhibitory postsynaptic 
potentials (IPSPs) that coordinate principal cells to fire sparsely.42 In 
contrast, pathological ripples are thought to arise due to reduced IPSPs 
that give rise to brief bursts of population spikes.43 Pathological fast ripples 
may result from slightly out-of-phase firing of independent clusters of 
these pathologically interconnected neurons. Proposed mechanisms for 
generating these fast pathological oscillations are ephaptic interactions, 
electrotonic coupling via gap junctions, or fast synaptic transmission.11,23 It is 
known that physiological HFOs can occur in functionally eloquent regions 
such as the sensorimotor14 and visual cortex44 and in the hippocampus, 
where ripples may be involved in memory processing.45 In a previous study 
we described a patient who became completely seizure free (and stopped 
using medication) but showed residual spikes and fast ripples in Broca’s area 
and the central motor area after surgery.9 We found normal ARRm values 
in these regions in the same patient, suggesting that the ARRm might be 
insensitive for what is probably physiological oscillatory brain activity. 
This finding also confirms that pathological HFOs may have a more non-
harmonic signature than physiological HFOs. This potential insensitivity of 
ARRm to physiological oscillations is also reflected in a better poor outcome 
prediction compared to fast ripples, as previously described;9 the PPV was 
88.9% for ARRm and 75.0% for fast ripples, while they have an equal NPV; 
64.4% and 64.3% respectively. 

Analogously, while the exact mechanism behind the nonharmonic 
behavior quantified by the ARRm remains unclear, we might be able to 
find some explanatory links between our method and its clinical results. 
The observation that modulation of the autoregressive residual variation 
localizes epileptogenic tissue, suggests that the processes causing high 
ARRm values are related to relatively short bursts of highly non-harmonic 
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signal features interrupting the background activity. This is supported by 
the findings by Dümpelmann et al. (2012) who distinguished epileptogenic 
HFO activity on the basis of its non-stationary appearance.18 The neuronal 
processes accountable for such bursts of exceptional activity might be 
avalanche dischargers as shown in computational models.46,47 An even 
more challenging question is how to relate those processes to the epileptic 
properties of neural circuits. It was recently demonstrated that both epileptic 
transitions and action potential avalanches could be also be generated 
by excessive amounts of gap junctions.1 These discharges also generated 
high values of residual variance after auto-regressive model fitting. In 
resemblance to pathological HFOs, we speculate that a possible cause of 
high ARRm values is the presence of high electric conductance between the 
axonal compartments in the brain tissue picked up by the electrode.

STUDY LIMITATIONS
We implemented a threshold for the ARRm, based on results from pre-
surgical ECoG recordings and the ability of ARRm to predict channels with 
fast ripples, with a specificity of 95%. Such a general threshold may not fit 
all individual patients, and could induce false negative results as shown by 
the results in group B (fast ripples but no ARRm+ channels). With respect to 
surgical outcome, only 8 of 24 patients with seizure recurrence showed an 
elevated ARRm in post-resection ECoG. The absence of epileptic biomarkers 
in the post-resection ECoG may be due to a too strict threshold definition, 
inadequate sampling of the cortex or ongoing epileptogenesis after surgery. 
A strength from a clinical perspective is that our unsupervised ARRm 
algorithm is a channel identifier rather than an event identifier. Surgeons 
require information about the channels, representing cm2 of cortical tissue, 
that need to be resected or not. However, a more gradual scale could be 
preferred over this black-and-white decision offered by a thresholded 
quantifier. This way, ARRm values could indicate tissue epileptogenicity 
risk.

A potential bias in our study could be that high ARRm values are found in 
eloquent areas close to the resection area, if the eloquent areas produced 
more physiological high frequency activity.48 These areas may not have 
been part of the epileptogenic zone, but patients with a resection close to 
functionally eloquent areas do have a higher risk of incomplete resection 
and thus poor surgery outcome. Our study population included only a few 
patients who underwent a resection close to eloquent areas.
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We incorporated artefact rejection designed to reject subtle but influential 
artefacts. This method did not work for all types of artefacts (Figure 4.2). 
Intra-operative ECoG recordings are sensitive to artefacts and noise due 
to the electrical equipment and surgical manipulation. These types of 
artefacts could all be actively prevented by a ‘time-out’ procedure, in which 
all interfering devices are switched off if possible, and all hands are clear 
from the patient. It then takes only one minute of recording to calculate 
accurately the ARRm results.

Due to the retrospective nature of this study and the limited amount of 
data, it was not possible to investigate the stationarity of our results. It 
was recently suggested that the performance of automatic HFO detection 
depends on the type of resting state, and benefits from sleep rather than 
awake data.49 This fits the findings that slow wave (non-REM) sleep gives the 
best HFOs signals.50,51 Intra-operative recordings are a hybrid form, where 
sedation induced by propofol is subsequently tapered until a continuous 
EEG pattern is reached. We know that propofol, also used as an anti-epileptic 
agent in status epilepticus, suppresses the amount of interictal HFOs in the 
signal, but not their location.52 If pathological HFOs and non-harmonicity 
are indeed linked, anesthetics and anti-epileptic drugs would influence 
nonharmonicity in the signal as well. This would be in line with evidence 
found for attenuation of non-linear EEG quantifiers by such drugs.34,53,54

CONCLUSIONS
We showed that the ARRm predicts poor post-surgical outcome when 
measured after resection. It performs as well as, or maybe even better 
than, residual fast ripples. There is an increasing need for implementation 
of automated algorithms to find the epileptogenic zone in clinical EEG 
software. The ARRm is the first unsupervised real-time analysis that could 
be used intraoperatively to provide an ‘on demand’ interpretation per 
electrode about whether or not the underlying tissue needs to be removed. 
Future research should focus on further optimizing the ARRm algorithm 
and on finding the optimal threshold. Meanwhile, we should aim to enable 
artefact-free recordings in the operating theatre and know the influence of 
propofol on the non-harmonicity of the ECoG signal.
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ABSTRACT

OBJECTIVE

People with epilepsy need assistance and are at risk of sudden death when 
having convulsive seizures (CS). Automated real-time seizure detection 
systems can help alert caregivers, but wearable sensors are not always 
tolerated. We determined algorithm settings and investigated detection 
performance of a video algorithm to detect CS in a residential care setting. 

METHODS
The algorithm calculates power in the 2-6 Hz range relative to the total 
power (0.5-12.5 Hz) in group velocity signals derived from video-sequence 
optical flow. A detection threshold was found using a training set consisting 
of video-electroencephalogaphy (EEG) recordings of 72 CS. A test set 
consisting of 24 full nights of 12 new subjects in residential care and 
additional recordings of 50 CS selected randomly was used to estimate 
performance. All data were analyzed retrospectively. The start and end of CS 
(generalized clonic and tonic-clonic seizures) and other seizures considered 
desirable to detect (long generalized tonic, hyperkinetic, and other major 
seizures) were annotated. The detection threshold was set to the value that 
obtained 97% sensitivity in the training set. Sensitivity, latency, and false 
detection rate (FDR) per night were calculated in the test set. A seizure was 
detected when the algorithm output exceeded the threshold continuously 
for 2 seconds. 

RESULTS
With the detection threshold determined in the training set, all CS were 
detected in the test set (100% sensitivity). Latency was ≤10 seconds in 78% of 
detections. Three/five hyperkinetic and six/nine other major seizures were 
detected. Median FDR was 0.78 per night and no false detections occurred 
in 9/24 nights. 

CONCLUSIONS
Our algorithm could improve safety unobtrusively by automated realtime 
detection of CS in video registrations, with an acceptable latency and 
FDR. The algorithm can also detect some other motor seizures requiring 
assistance.
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INTRODUCTION
The importance of monitoring people who are at risk because of their 
seizures has often been stressed.1–3 After convulsive seizures (CS), defined 
here as generalized clonic and tonic–clonic seizures, interventions such as 
repositioning, stimulation, or clearing of the airway may have a protective 
effect in preventing sudden unexpected death in epilepsy (SUDEP).4 The 
person with seizures is often in need of assistance or first aid due to (non–
life-threatening) injury, but is not able to alert anyone. Alternative ways of 
alerting the caregiver are needed.

Several devices for automated seizure detection are on the market. Many 
seizure detection systems require sensors or complete devices to be attached 
to the individual.5 Some patient groups such as children or people with 
intellectual disability may not tolerate wearable devices and may try to 
dislodge them. Unless properly concealed, such devices may also contribute 
to the social stigma associated with epilepsy. Alternatively, unobtrusive 
wireless sensors could be used, but these require regular charging and a 
reliable wireless connection to an alerting unit. Movement sensors that can 
be attached to the bed are widely used in nocturnal seizure monitoring and 
show fair detection performance for CS.6,7 Such detectors, however, are only 
effective if the person is in bed. An alternative solution is remote detection.

Automated online analysis of video recordings can enable remote detection 
of the rhythmic vibratory or jerklike body movements in CS. Such a system 
would be privacy-friendly as there is no need for video storage or for 
someone to monitor output. A number of studies have been performed on 
detecting CS using video recordings.8–14 These studies were, however, proofs 
of principle, showing detection feasibility in small datasets recorded in 
controlled clinical settings. There is currently no working system available 
that has been shown to have good performance in real life settings.

Previously, we presented an algorithm aiming to discern CS from normal 
behavior in video recordings.14 The algorithm quantifies the oscillatory 
movements seen as vibrations during the tonic phase, and clonic movements 
in the clonic phase.15,16 The algorithm showed promising CS detection 
performance in a video-electroencephalography (EEG) training set and is 
suitable for real-time use. There is, however, currently no information on 
the behavior of our seizure detection algorithm in daily practice. A detection 
threshold is not yet established, and algorithm performance has not been 
validated in new test data. This is required to make the algorithm functional 
and to provide practical guidelines to enable its use.
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We aimed to determine a detection threshold and to investigate the detection 
performance, and variables influencing performance, of our noncontact 
seizure detection algorithm. We pursued a realistic performance estimate 
by analyzing long-term nightly video recordings in a residential care setting.

METHODS

VIDEO DATA

We retrospectively analyzed two separate video databases; a training set 
to find a suitable detection threshold and a test set to study detection 
performance. The training set is an existing video database that was 
described previously.14,17 The detection algorithm was developed in 2012 
using this database,14 and in the present study we reused the database to find 
suitable detection settings. The test set is a novel video database consisting 
entirely of new subjects. Test set data were collected under the LICSENSE 
trial (NTR4115), by the Dutch TeleEpilepsy consortium, a collaboration 
between University Medical Center Utrecht, Stichting Epilepsie Instellingen 
Nederland, and Kempenhaeghe.18 The study protocol was approved by a 
regional ethics committee and written informed consent was given by all 
participants or their guardians. All data were handled anonymously.

TRAINING SET
The training set consisted of 50 video-EEG recordings selected randomly 
from an epilepsy monitoring unit (EMU) database, recorded between 2003 
and 2011. The training set contained 72 CS from 50 individuals. Videos were 
recorded with Bosch (Bosch Security Systems, B.V.) Dinion-LTC 0610, and 
Ikegami (Tsushinki Co., Ltd., Ohtaku, Tokyo, Japan) B/W CCD ICD-47 
E-type cameras. All digitized recorded images were in mpeg2 format with a 
resolution of 352(H)x288(V) pixels and a fixed frame rate of 25 frames per 
second.

TEST SET
The test set comprises a selection from the video data collected in the 
LICSENSE trial, conducted in 2015 and 2016. In this observational study, 
performance of the Nightwatch (LivAssured BV), a wearable seizure 
detection system, was tested in residential care settings, where most residents 
have mild to severe intellectual disability. Those residents with at least one 
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monthly nocturnal CS were included and monitored at night for a period 
of 3 months. Caregivers kept a seizure diary. In a random 10% sample of 
all nights, the full video recording was reviewed by an experienced epilepsy 
nurse (off-line analysis), and seizures were annotated. Seizure annotations 
are limited to symptoms visible on the video.

In this study, 2 nights were selected from the 10% screening samples of 
12 individuals - one night with one or more annotated CS, and another 
night without. If no CS were present, a night with CS was selected based 
on diary entries, or a second night without CS was selected. These nights 
were screened in the same way and by the same observers as the 10% 
screening sample. Additional CS recordings were included in the test set to 
enable accurate estimation of the sensitivity and latency of the algorithm, 
accounting for the low number of CS in the selected nights. In total, 50 
recordings with CS were selected randomly from LICSENSE trial subjects. 
Overrepresentation of data from a particular subject in the performance 
estimates was prevented by incrementing the number of seizures selected 
per subject, until 50 seizures were included.

Videos were recorded with FOSCAM (Shenzhen Foscam Intelligent 
Technology Co., Ltd., Shenzhen, China) FI9805E Outdoor 960P PoE IP 
cameras, with infrared illuminator for night-time recordings. Recordings 
were in mp4 format, with a resolution of 640(H)x480(V) pixels. Frame rate 
was variable, but had a minimum of 25, and a stable mean of ~30 frames per 
second over the 4-second windows used in algorithm calculations. Each half 
hour the recording system recorded a new video, resulting in video epochs 
of up to 30 minutes.

SEIZURE ANNOTATIONS
Two neurologists (RT, GV, or JA), blinded to the results, independently 
determined seizure category to establish the detection desirability of the 
seizures found. Any incongruence was solved by consensus. Detection 
desirability of specific seizure types was determined as (see Table 5.1): 
essential - for CS (category I), as they are an important SUDEP risk factor1,19,20; 
desirable - for long generalized tonic, hyperkinetic, and other major seizures 
such as series of short myoclonic/tonic seizures (categories IIa, b, and c, 
respectively), as these seizures may be harmful or require assistance; and 
nonclinically vital - for minor seizures (category III). In the training set, only 
annotations of CS are used, which were based on the video-EEG report.
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The start and end times of category I and II seizures in the test set were 
annotated by a trained technical physician (EG) who was blinded to detection 
algorithm results. The moment when the first behavioral change is observed, 
signifying clinical seizure onset, is annotated as the seizure start. Timing 
was based on the video and audio recording only. It is therefore possible 
that seizure activity started before the onset of a seizure is observable in the 
video. The end-of-seizure annotation is placed where the last observable 
seizure symptom ends and signifies the start of the postictal period. The 
start of the oscillatory period of CS was also annotated. The first visible 
oscillatory movements may either be vibratory movements during a tonic 
phase or the first clonic jerks of the clonic phase. Five-second annotation 
margins were applied before the seizure and oscillatory period start points 
to allow for slightly earlier detections.

CONVULSIVE SEIZURE DETECTION ALGORITHM
The detection algorithm used in this study was described previously.14 The 
algorithm consists of 4 steps: 1) optical flow calculation,21 reconstructing 
the vector field of velocities from luminance changes, presumably resulting 
from movements recorded by the camera; 2) reconstruction of group 
velocity parameters, obtaining 6 time series representing the rates of 
spatial transformations; the translation (horizontal and vertical), rotation, 
dilatation, and shear rates (horizontal and vertical); 3) extraction of the 
“seizureness spectrum,” representing the dominant component of the time-
frequency spectra of the 6 spatial group velocities. Spectra are calculated 
using Gabor aperture functions with central frequencies ranging from 0.5-
12.5 Hz, in 1-s windows; 4) calculation of the spectral contrast quantity, 
defined as the power in the 2-6 Hz band relative to the total Gabor power (0.5-

Category Description Detection need

I Convulsive seizures (CS): Tonic-clonic seizures (may 
start with a clonic phase) or generalized clonic seizures. Essential

IIa Tonic seizures that last longer than 30 seconds. Desirable

IIb Hyperkinetic seizures. Desirable

IIc

Other major seizures: These seizures cannot be clas-
sified as tonic-clonic, tonic or hyperkinetic seizures 
and may include a cluster of short tonic or myoclonic 
seizures.

Desirable

III Minor seizures: All other seizures. Non-clinically vital

TABLE 5.1. 
Seizure categories and the need for detection of these seizures. 
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12.5 Hz), in 4-s moving windows with 75% overlap. The 2-6 Hz frequency 
range was identified as the “spectral footprint” of CS. In some seizures the 
motion oscillations extend beyond this frequency range, but the range was 
considered optimal to minimize overlap with normal behavior. After the first 
4 s of a registration, each second the algorithm generates a dimensionless 
output value between 0 and 1. These values correspond to very low (close to 
0) to very high (close to 1) proportion of oscillatory movement in the 2-6 Hz 
frequency range, and with that the likelihood of registering a CS.

DETERMINATION OF ALGORITHM SETTINGS
To construct a functioning detector from the algorithm output, we 
implemented a detection threshold using the training set. A suitable 
threshold promotes detection sensitivity for CS as high as possible while 
keeping the number of false positives low. The detection threshold was set 
at the third percentile of detection output maxima during all oscillatory 
phases, obtaining 97% sensitivity in the training set. This was done to 
account for the possibility that not all CS had good quality recording; for 
example, caregivers may obstruct the view. A threshold resulting in 100% 
training set sensitivity would produce significantly more false positives.

After finding the detection threshold, a delay parameter was set to diminish 
the number of false positives caused by short oscillatory movements in the 
video. Suprathreshold algorithm output is ignored when the output does 
not stay above threshold for a duration equal to or longer than the delay 
parameter. The delay parameter was incrementally increased and set to the 
highest value where detection sensitivity was maintained, and latency did 
not increase more than the delay itself.

PERFORMANCE ANALYSIS
Detection performance was measured in terms of sensitivity and latency for 
CS (category I) and false detection rate (FDR) per night (8 hours). Detection 
performance for category II seizures is not a goal but considered a helpful 
sideline and is measured secondarily. Detection of category III seizures 
implies a false detection.

The algorithm detects a seizure when its output exceeds the threshold equal 
to or longer than the delay parameter during the seizure event. The seizure 
event is defined as the period between start and end annotations of the 
seizure. Detection latency is defined as the time between the start of the 
seizure and the detection. For CS, latency is also calculated from the start of 
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the oscillatory phase, as detection of the seizure before the start of this period 
is not expected due to the algorithm’s sensitivity to rhythmic movements. 
Factors possibly influencing detection latency were investigated visually.

When the algorithm output exceeds the threshold equal to or longer than 
the delay parameter at times other than during seizure events that were 
considered essential or desirable for detection, a false detection is generated. 
If a second false detection occurs within a 10-s blackout period after the 
first detection, this second false detection is disregarded. After the blackout 
period, new false detections are again taken into account. False detections 
were categorized as the following: detections of category III seizures, 
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FIGURE 5.1. 
Example of the algorithm output around the time of a convulsive seizure. A) Gabor time frequency 
spectrum, representing the dominant component of the time-frequency spectra of the 6 spatial 
transformations of the optical flow output. B) Convulsive seizure detection algorithm output (unitless, 
black solid line), defined as the power in the 2-6 Hz spectrum relative to the total spectral power. The 
colored boxes together represent the timeframe of the seizure, where the gray box shows the start of 
the seizure before the oscillatory phase, which is indicated with the yellow box. In this case, the seizure 
detection threshold (dashed blue line, at 0.51) is exceeded by the algorithm output just when the 
oscillatory phase of the seizure starts.
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detections during the postictal phase after a seizure, detections with 
caregivers present (not during a postictal phase), and other false alarms.

RESULTS
An example of the detection algorithm output is shown in Figure 5.1. The 
algorithm output threshold that detected 97% of seizures in the training 
set (threshold: 0.51) and a 2-s detection delay was applied to the algorithm 
for use in the test set. The test set consisted of recordings from 24 full 
nights (total duration ~253 hours) of 12 subjects, with 5 hyperkinetic and 9 
major seizures recorded in 7 different subjects. Fifty CS were included from 
9 different subjects (mean 5.5 seizures per subject, range 1-8). Six of  the 
included seizures occurred within the 24 full-night recordings.
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FIGURE 5.2. 
Detection latencies for the 50 convulsive seizures in the test set, sorted according to latency. The circles 
indicate the moment in time when the detection was made, calculated from the start of the oscillatory 
phase (at time = 0 seconds). The dotted lines indicate the duration of the convulsive seizures before the 
oscillatory phase. This duration may include symptoms of a focal onset of the seizure.
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All CS were detected in the test set (100% sensitivity), with latencies shown 
in Figure 5.2. Seventy-eight percent of CS were detected within 10 seconds 
from the start of the oscillatory period. Detection latencies for seizures in 
subjects covered completely by a blanket (n = 19) were not significantly 
different from latencies in those who were uncovered (n = 7) or partly 
covered (n = 24) (2-sample Kolmogorov-Smirnov test, P>0.05). In cases 
where detection latency was longer than 20 seconds, either a fluctuating 
oscillation amplitude was seen in the tonic phase, or caregivers were present, 
creating low-frequency “noise” in the video with their movements. Category 
II seizures were detected with a sensitivity of 57%. Detection latencies varied 
between 7 and 35 seconds. No tonic seizures longer than 30 seconds (category 
IIa) were registered in the test set. Three of five hyperkinetic seizures were 
detected (category IIb), and 5 of 9 other major seizures (category IIc).
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A) Test set false detection rates (FDRs) per night (8 hours) for each case. The colors in the stacked 
bars indicate the situation in which the false detection occurred. Green bars indicate detections of 
nonclinically vital seizures (category III), blue bars indicate detections during the postictal phase after 
a seizure, yellow bars indicate detections when a caregiver was present (not during a seizure or postictal 
phase), and orange bars indicate other false alarms. B cases 2-6, 8, and 11 included a category I seizure. B) 
Histogram of FDR results per night, where each case is an observation. The first bar holds cases without 
false alarms.
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False detection rates (FDRs) for all nights are shown in Figure 5.3. Median 
FDR was 0.78 per night (95% confidence interval [CI] 0-2.0 per night). 
No false detections occurred in 9/24 nights, which applied to both nights 
for 2 subjects. In more than half of the cases, an FDR of one or less per 
night occurred. FDR was high (>5 per night) in 4 cases, corresponding to 3 
subjects. Detection of category III seizures caused 12% of false detections, 
which were all myoclonic jerks (frequent in case 9A). Eight percent of false 
detections occurred during the postictal period, due to physical restlessness 
(all after category I or II seizures). In 8% of false detections, the detection 
occurred when a caregiver was in the room (not during a postictal period). 
Examples of false detection causes in these cases were movement of a flash 
light beam or patient manipulation. Other false alarms (72%) were caused 
by patient behavior (45%), such as scratching and fidgeting (frequently 
in case 1B), and video disturbances (27%), such as objects (e.g., cobwebs, 
curtain cord) moving due to airflow fluctuations.

DISCUSSION
This study shows that our noncontact seizure detection algorithm can 
perform well in a test set of new cases, when applying detection settings 
that were optimized using a training set. The algorithm detected all CS with 
an acceptable latency in a test set of nightly video recordings in a residential 
care setting. Seizures with a 2-6 Hz oscillatory movement pattern, observed 
for 2 seconds or longer, are detected, even when the subject is covered 
by a blanket. Detection latency is minimally 2 seconds, plus the time it 
takes for the seizure activity to manifest in a clear oscillatory movement 
pattern. Hyperkinetic seizures and other major seizures with a 2-6 Hz 
movement pattern can also be detected. The algorithm’s calculations are 
computationally light and use only the last registered 4 s of data, making it 
suitable for real-time use.

In more than half of cases, an FDR of one or less per night was observed. In a 
small number of cases, however, a high FDR was observed. False detections 
were most frequently caused by active behavior of an awake or postictal 
patient, that is, scratching or fidgeting. Myoclonic jerks were in some 
cases also detected despite their short duration, as oscillatory movements 
occurred when limbs bounced on the bed after an event. In some cases, video 
disturbances by objects moving in airflow caused false alarms. Combining 
detection output from video with other noncontact inputs (eg, sound) might 
diminish the chance of false positives, but possibly at the cost of sensitivity 
and latency. In light of the favorable sensitivity and latency findings with the 
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current algorithm, such a tradeoff to improve the FDR could be considered. 
Alternatively, awake users could be empowered to disable false detections 
manually, although giving a user time to disable a false alarm will inevitably 
lengthen detection latency. Which FDR is acceptable may depend on 
the individuals involved and their living conditions. If the subject can be 
observed from a distance via video connection in case of an alarm, like in 
a residential care setting, a higher FDR could be acceptable compared to a 
home setting where caregivers are awakened by alarms.

In this phase 2 study (according to the recently proposed standards for 
seizure detection studies22) an extensive dataset with randomly selected 
long-term recordings was used, where data was not clipped, edited, or 
filtered before automated processing. Bias was prevented by concealing the 
algorithm output from the experts annotating seizures. Prior to this, only 
feasibility of detection has been demonstrated, and the generalizability of 
detection results, particularly to real-life situations, remained unclear.8,10,12–14 
Performance was often calculated on the same data that was used to select 
appropriate detector settings, with short video fragments recorded in a 
controlled clinical environment and only the subject in view.

Most remote CS detection methods reported in literature are, like ours, 
targeted on movement periodicity (the exception being methods targeted 
on seizure sounds23,24). CS have been detected in video recordings by 
calculating periodicity in the luminance signal10–12 and with neural networks 
trained on optical flow motion tracking output.8,9 In another study, colored 
pyjamas were used to facilitate movement quantification for CS detection.13 
Compared to other algorithms targeted on periodicity, the detection delay 
we used (2 seconds) is shorter than generally applied (10 seconds),6,10–12 
while maintaining a low false detection rate. This can be attributed to 
the application of spectral contrast (opposed to power) and the output-
smoothening effect of the 4-second calculation window.

We used an extensive test set, but all recordings were made during the night 
and all events of interest were derived from a small number of subjects. 
Detector settings were, however, based on a much larger sample in the 
training set, which contains 72 CS from 50 individuals in day- and nighttime 
recordings. It is likely, therefore, that detector sensitivity and latency in 
practice will be close to the sensitivity and latency in the training set (97% 
and <10 seconds in 81% of detected seizures, respectively). Realistic FDR 
results during daytime could not be derived from the fragmented video 
registrations in the training set. We expect false detections to be more 
frequent during the day in individuals with a tendency for false detection–
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causing behavior. False detection rates might be different in other target 
groups that were not in the test set, such as children or adults outside of 
residential care.

The detection settings of our algorithm are presumably generic, as they 
were chosen using a data set from different subjects and video data from 
different hardware than the data used for validation. Although personalized 
detection settings might improve detection performance, this requires long 
(supervised) training sessions, making it less practical for direct deployment. 
Lengthening the detection delay could, for example, prevent false detections 
caused by short rhythmic movement patterns, while retaining sensitivity 
for CS if they have rhythmic movement patterns with a longer duration. 
If needed, personalization should be attempted only by professionals in a 
controlled setting, where video and EEG recordings enable checking and 
analysis of missed seizures and false detections.

CONCLUSIONS
Our detection algorithm could be used in a real-time automated noncontact 
monitoring system to increase the safety of people with epilepsy at home, 
without intruding on privacy, as no video storage or monitoring is necessary. 
The algorithm is highly sensitive to CS and false detection rates are low 
in most cases. For some subjects, application of our algorithm could be 
unsuitable in practice; that is, subjects with many false detections, who 
are unable to disable false alarms themselves. Future work should focus on 
prospectively evaluating real time detection performance of the algorithm 
in a broad target group of users. 
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ABSTRACT

OBJECTIVE

Elderly people and people with epilepsy may need assistance after falling, 
but may be unable to summon help due to injuries or impairment of 
consciousness. Several wearable fall detection devices have been developed, 
but these are not used by all people at risk. We present an automated analysis 
algorithm for remote detection of high impact falls, based on a physical 
model of a fall, aiming at universality and robustness.

METHODS

Candidate events are automatically detected and event features are used 
as classifier input. The algorithm uses vertical velocity and acceleration 
features from optical flow outputs, corrected for distance from the camera 
using moving object size estimation. A sound amplitude feature is used to 
increase detector specificity. We tested the performance and robustness of 
our trained algorithm using acted data from a public database and real life 
data with falls resulting from epilepsy and with daily life activities. 

RESULTS

Applying the trained algorithm to the acted dataset resulted in 90% 
sensitivity for detection of falls, with 92% specificity. In the real life data, 
six/nine falls were detected with a specificity of 99.7%; there is a plausible 
explanation for not detecting each of the falls missed. 

CONCLUSIONS

These results reflect the algorithm’s robustness and confirms the feasibility 
of detecting falls using this algorithm. 
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INTRODUCTION
Like age-related health problems in elderly people, some seizure types in 
people with epilepsy cause loss of balance which may result in a fall.1,2 Falls 
can cause serious injuries, especially when there is high impact with the 
floor or some other hard surface.3 People who have fallen may be unable to 
summon help due to injuries or impairment of consciousness. Automated 
detection may help alert caregivers to seizure-related falls.

Several solutions have been proposed for automated detection of falls, often 
using accelerometers to measure movement patterns. Such devices need to 
be worn at all times, however, and this may be forgotten or not well tolerated 
by the subject. An alternative solution is remote fall detection. 

Monocular video cameras can be used as sensitive, versatile and relatively 
cheap sensors to quantify movement, and automated online analysis of the 
video stream may enable remote detection of falls. Common features for 
detection include shape-related features such as changes in the person’s 
shape,4–9 bounding box dimension ratios,10–14 and ellipsoids modelling 
posture changes.15–17 Motion pattern features such as velocity and motion 
energy of the individual segmented in the frame have also been used to 
detects falls.18–24 In many recent studies a combination of motion and shape 
related features has been used.15,16,33,25–32 Other methods to detect falls in 
video recordings include inactivity detection34 or anomaly/unusual event 
detection.35,36

Remote fall detection has also been performed using audio analysis,37–39 and 
combining video and audio features could potentially increase detection 
performance. Video and audio classifiers have previously been combined, 
detecting a fall only if both classifiers provided a high fall probability.40 

There is currently no working system for remote fall detection that has 
shown good detection performance on real-life data. Promising performance 
results have been reported in benchmark video datasets with acted falls, 
with sensitivity and specificity values >95%.15,26–28,33,41,42 The generalizability 
of these results is questionable, as results on new data not used for training 
and, particularly, on real-life data are often lacking. When performed, 
application of trained algorithms on new data shows more modest 
performance results.16,30,41 It has been suggested that real-life falls differ from 
acted falls, for example in terms of impact.43 To our knowledge, there exist 
no studies on remote detection of seizure-related falls, which may differ 
from acted falls, or falls not resulting from seizures. 
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We propose an algorithm for remote detection of high impact falls, aiming 
for universality and robustness to new data and real-life epilepsy-related falls. 
We used half of a benchmark dataset with acted falls and normal activities 
to train the algorithm. We then tested the trained algorithm’s performance 
and robustness on the other half of the benchmark dataset and on a newly 
collected test set containing real-life falls resulting from seizures.

METHODS
Rule-based analysis of video and audio signals, as deduced from a physical 
model of a fall, provides us with possible fall events. Unlike most fall 
detection algorithms that convert the entire time series to signal features 
for machine learning-based classification, our algorithm uses only signal 
features at the time of possible fall events. In this way we use prior knowledge 
of event properties to reduce the quantity of observations to classify. The 
algorithm does not require segmentation of the person in the video frames, 
but uses vertical velocity and acceleration analysis from optical flow outputs, 
complemented with a sound amplitude feature for increased detector 
specificity. The algorithm consists of three parts: preprocessing of the video 
and audio signals; event detection; and event classification. An overview 
of the algorithm is shown in Figure 6.1. All calculations were performed in 
Matlab (version 2017a, Mathworks Inc., Natic, USA). 

DATASETS
We used two datasets for the development and validation of the fall detection 
algorithm; the publicly available Le2i fall detection database26 and the SEIN 
fall database, a video database of recordings of genuine falls from people 
with epilepsy, collected at our center. Recording information is summarized 
in Table 6.1.

The Le2i database contains 221 videos simulated by actors, with falls in 
all directions, various normal activities and challenges such as variable 
illumination and occlusions. Videos were recorded from four room 
settings; ‘coffee room’, ‘home’, ’lecture room’, and ‘office’, with 320 x 240 
pixel resolution and a frame rate of 25 frames per second (fps). A subset 
of this database (‘Office2’) was excluded for lack of an audio stream in the 
video files. The remaining dataset (190 videos) was split in two randomly, 
providing a training set and a test set. 
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FIGURE 6.1. 
Fall detection algorithm workflow. Video and audio streams are analyzed separately to provide signal 
features for events. Event features are only calculated when an event is detected, i.e. when a downward 
vertical velocity peak is found. Standardization and support vector machine parameters are obtained 
with algorithm training. Vv: smoothed vertical velocity, Vmax: positive maximum vertical velocity, Dmax: 
deceleration maximum, Amax: acceleration maximum (_u: uncorrected for moving object size), Spk: 
sound envelope peak.
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The SEIN fall database was selected from a historical video database 
containing clinical recordings of people who fell because of a seizure. Only 
videos with the fall happening in view of the camera were included. Five/
nine videos were collected at an epilepsy monitoring unit, had a 1008 x 
535 pixel resolution and an audio sampling frequency of 48,000 Hz. The 
remaining four videos came from several neurologists’ personal seizure 
video databases, had a 352 x 288 pixel resolution and an audio sampling 
frequency of 44,100 Hz. All videos had a frame rate of 25 fps. The need for 
written informed consent from the individuals in the videos was waived by 
our institutional ethics committee. All data was handled anonymously.

Fall start and end times in the Le2i dataset were annotated by the makers of 
the dataset. The time of impact with the floor was annotated for falls in the 
training set by EG (one of the authors). Fall start and end times in the SEIN 
fall database were also annotated by EG.

PREPROCESSING
Video-audio data in the test sets is windowed to be able to count detector 
true negatives and estimate fall detection performance realistically. We 
applied a three-second calculation window shifted with one-second steps 
(two-second overlap) to obtain algorithm output every second.

Optical flow and subsequent vertical velocity calculations provide subject 
velocity estimates without having to first segment the subject from the video 
frames, promoting computational lightness. Choosing this preprocessing 
step also allows combining a seizure detection algorithm previously 
developed by our group44 with the fall detection algorithm proposed in this 
paper into one detection system, without adding much extra computational 
cost.

TABLE 6.1. 
Used datasets for training and testing the fall detection algorithm.

Dataset Subjects (N) N videos N falls Total video 
length (h)

Mean video length (s) 
[range]

Le2i

  - training set Actors (9) 94 65 0.41 15.7 [5.3-78]

  - test set Actors (9) 96 65 0.44 16.5 [5.6-64]

SEIN test set Patients (9) 9 9 1.45 578 [11-1600]



117VIDEO-BASED DETECTION OF FALLS

6

Video stream optical flow was estimated using the Horn-Schunck method45 
implemented as standard in Matlab, where the velocity vector field is 
obtained from the intensity field L(x,y,t) as a function of the 2-D spatial 
coordinates (x,y) and the time t:

.	 (6.1)

For further calculations we used only the vertical velocity time signal Vy(t), 
defined as

. 	 (6.2)

Vy(t) was smoothed along the time samples, or frames, using a one-
dimensional Gaussian filter with its scale parameter set to 4 samples 
(4/25 second), obtaining the smoothened vertical velocity Vv(t). The scale 
parameter setting was fine-tuned to this value during classifier training 
(see “Algorithm settings and classifier training” Section). Additionally, 
vertical acceleration Av(t) was calculated by taking the first derivative of 
the smoothed vertical velocity signal Vv(t). For the purpose of this study we 
selected the downward direction of Vv to be positive. 

Audio was preprocessed to provide a smooth amplitude envelope. From the 
stereo sound recordings, we used only the first audio channel. The signal 
envelope was calculated using the Hilbert transform and smoothed using 
a one-dimensional Gaussian filter with its scale parameter set to 0.1 s. 
This filter scale setting was also fine-tuned during classifier training (see 
“Algorithm settings and classifier training” Section).

Ver�cal velocity

Sound amplitude
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accelera�on
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FIGURE 6.2. 
Schematic illustration of the fall model used.
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EVENT DETECTION AND FEATURES

To detect possible fall events, we used the following model of a fall, illustrated 
schematically in Figure 6.2. Once an individual starts to fall, downward 
velocity quickly increases and suddenly decreases again when the individual 
hits the ground. The quick increase and decrease in velocity are reflected in 
the maximum downward acceleration Amax and deceleration Dmax. Between 
these two extrema is the point of maximum vertical downward velocity Vmax. 
The impact of the person with the floor is accompanied by a sound. An event 
is detected when an Amax, Vmax, Dmax sequence, and an accompanying sound, 
are found within a calculation window.

To calculate the video event features, we first find positive velocity maxima and 
for each find its leading acceleration maximum and following deceleration 
maximum. Feature values are subsequently corrected for distance to the 
camera. Uncorrected maxima (Vmax_u, Amax_u, Dmax_u) are calculated at 
corresponding time points (tV, tA, tD) for each calculation window (w). We 
define for any function f(t) of the discrete time variable t, the set of time 
points Tf

w of its positive local maxima within w as: 

, 	 (6.3)

where f(t) can be replaced with Vv(t) to obtain TV, with Av(t) to obtain TA, 
and with -AV(t) to obtain TD. Only events with a consecutive tA < tV < tD 
sequence were considered eligible for a fall. The uncorrected features for 
each remaining event are:

,	 (6.4)

,	 (6.5)

. 	 (6.6)

The values of our video features depend on both the actual size of the object 
and its (focal) distance to the camera. Assuming that the only motion signal 
being observed is that of the subject, we can correct our video features for 
subject-camera distance or zoom angle changes using the size of the image 
area representing the velocity field of the subject. We can approximate the 
size of the image-footprint of a moving object from the optical flow velocity 
field at each time point t, using the determinant of the second moment 
tensor in the squared field’s centroid. First, we spatially smoothed the 
magnitude of the velocity field ||V(x,y)||, using a two-dimensional Gaussian 
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filter with its scale parameter set to 10 pixels, obtaining the smoothened 
field magnitude VMs(x,y). For further calculations we used the squared 
smoothened magnitude of the velocity field 

,	 (6.7)

emphasizing large-amplitude movements that are presumably the subject’s. 
The total amount of movement at a given time, quantified by the sum  
Nw = ∑x,yW(x,y), will be used as a normalization factor considering (6.7) as 
a distribution density. The centroid location (xc,yc) of the squared velocity 
field can be found using:

;   .	 (6.8)

The second moment tensor describes the spatial distribution of the velocity 
field around the centroid and is defined as

.	 (6.9)

We can then approximate the moving object area in the field with

,	 (6.10)

where N is the number of pixels. A correction factor was obtained for each 
event, by averaging the calculated areas over time from the acceleration 
maximum to the velocity maximum:

.	 (6.11)

The three event velocity features can then be corrected as follows:

,	 (6.12)

,	 (6.13)

.	 (6.14)

For time windows with an event we obtained a fourth feature, based on the 
sound peak during the event. The window’s relative peak amplitude (Spk) was 
calculated using the smoothed envelope’s (Senv) maximum and minimum:

.	 (6.15)
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If a window contained multiple events, these received the same sound 
feature Spk.

CLASSIFICATION
We classified events using a support vector machine (SVM) with a radial 
basis function (rbf) kernel. The training procedure that provided the SVM 
hyperparameters and model parameters is described in the “Algorithm 
settings and classifier training” Section. In each three-second analysis 
window zero, one, or multiple events may be detected. The Vv fall waveform 
with corresponding acceleration extrema and sound peak need to occur in 
the same calculation window for them to constitute a detection. To prevent 
double detections of a single event owing to overlapping analysis windows 
we define that tV is between t = 1s and t = 2s of its corresponding window. If 
an event was detected, its features were passed to the classifier. The resulting 
posterior probability was stored as the classifier output for the window. If 
the window contained multiple events, all were passed separately to the 
classifier and the maximum posterior probability was stored as output. If no 
event was present in the analysis window, classifier output was set to zero.

ALGORITHM SETTINGS AND CLASSIFIER TRAINING
Algorithm settings were optimized in the following order: 1) SVM 
hyperparameters, 2) Gaussian filter scale parameters (used in audio and 
video preprocessing), 3) feature set standardization parameters. Settings 
optimization was followed by 4) classifier training, which provided the SVM 
parameters. In all four steps of this procedure we used only the training set 
in a ten-fold cross-validation scheme.

The classifier was trained to separate fall events from non-fall events based 
on event features, aiming for high sensitivity for falls. A sub selection of 
events was used for training; one event per fall, and a maximum of five non-
fall events (selected randomly) per video. The number of non-fall events 
per video was limited to prevent over-representation of specific situations 
of a registration in the dataset. To select the right fall event for training 
(there may be multiple instances of Vmax), we assumed that the event with 
the largest velocity within the [impact time -1 s,impact time +1 s] timeframe 
indicates the fall. In total, the training set contained 370 events, of which 94 
were labeled ‘fall’.

We tuned the SVM hyperparameters; the soft margin constant, regulating 
misclassification penalty, and the rbf kernel scale, determining model 
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flexibility. Tuning aimed to optimize precision and accuracy at 90% 
sensitivity. To favor high sensitivity over accuracy, misclassification cost 
for false negative detections was increased until 90% sensitivity (in the 
cross-validation) was achieved. This process resulted in a subset of suitable 
hyperparameter settings, as no clear optimum was found. From this subset, 
we chose the hyperparameter settings that provided the most robust SVM 
parameters, minimizing variance over the folds.

Next, we fine-tuned the scale parameters for the Gaussian filters used to 
smooth the vertical velocity and sound envelope signals. The filter scale 
parameters were originally chosen visually to distinguish signals during 
falls. Both filter scale parameters were finetuned by optimizing precision 
and accuracy at 90% sensitivity in the training set. 

The feature set was transformed logarithmically and standardized to zero 
mean and unit standard deviation. The standardization parameters were 
saved to standardize future observations. Finally, the SVM was trained on 
the entire standardized training set, again using a 10-fold cross-validation 
scheme. Other possible sub-selections of features, classification models, 
and SVM kernels were also explored, but showed worse performance and 
were thus pursued no further.

PERFORMANCE ANALYSIS
Performance was analyzed in the (so far unused) Le2i test set and the SEIN 
test set. A fall was detected (true positive, TP) when one of the windows 
overlapping with fall start-end annotations received supra-threshold 
classifier output. If none of the windows overlapping with the fall annotation 
received supra-threshold output, the fall was not detected (false negative, 
FN). Each non-fall window wrongly classified as a fall provided a false positive 
detection (FP). Non-fall windows correctly classified provided true negative 
(TN) detections. Detector sensitivity and specificity were calculated using 
detection counts N:

	 (6.16)

	 (6.17)

A receiver operating characteristics (ROC) curve for the Le2i test set, plotting 
sensitivity and specificity for different posterior probability thresholds, 
provided: ROC area under the curve (AUC), and specificity (SPEC) and 
positive predictive values (PPV) in different ROC working points. We also 
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analyzed the distribution of false positive fraction (FPF) values for individual 
recordings at 90% sensitivity, defined as the fraction of non-fall windows 
wrongly classified as a fall. Performance in the SEIN test set was analyzed 
qualitatively to provide directions for use of the algorithm in practice.

RESULTS
We first compared fall Vv waveforms observed in both test sets to assess 
the feasibility of applying the trained algorithm to the SEIN test set data, 
with falls that are possibly different. The results in Figure 6.3 show that 
fall waveforms in the SEIN test set are similar to those in the Le2i test set. 
Smaller median Vv amplitudes were observed in the SEIN test set. This could 
be caused by an overall larger distance of the subjects from the camera. 
Because differences between amplitudes of both test sets remained after 
object size correction (results not shown), we surmise that velocities of the 
real-life falls in the SEIN test set are smaller than those in experimental falls, 
as has also been described in Reference 43. 

Applying the trained classifier to the Le2i test set resulted in the ROC 
curve shown in Figure 6.4. Results for different ROC curve working points 
are summed up in Table 6.2. Le2i test set results when using a feature set 
without sound are also shown, to illustrate the added value of the sound 
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FIGURE 6.3. 
Median fall Vv waveforms (solid lines) with interquartile ranges (shaded areas), for the Le2i test set 
(N=65 falls) and SEIN test set (N=6 falls with fall waveform). Fall waveforms were synchronized by 
putting all fall Vv  minima at t=0.
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feature. FPF distributions for individual Le2i test set recordings obtained 
with the posterior probability threshold corresponding to 90% sensitivity, 
are shown in Figure 6.5. Most of the videos (61%) show zero false positives, 
encompassing 43% of the total length of the dataset. In 75% of videos, 
accounting for 71% of total dataset length, a low FPF<0.1 was found. Two 
relatively short videos had a high FPF>0.3. With a small number of non-fall 
windows the FP fraction easily becomes high. Most FPs in the Le2i test set 
occurred when chairs were put down on hard flooring, and video and audio 
features resembled values of a fall. 

Applying the detection threshold that provided 90% sensitivity in the 
training set in the SEIN test set resulted in detection of six/nine falls. 
Inspection of the videos and Vv waveforms of undetected falls provided 
explanations: 1) camera movement (tilt, controlled by staff) cancelled out the 
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FIGURE 6.4. 
Receiver operating characteristics (ROC) curve of fall detection algorithm testing results for the Le2i test 
set. Training set performance is shown in the background for reference. ROC curves were constructed 
using different classifier posterior probability thresholds.

ROC 
AUC

100% sensitivity 90% sensitivity 80% sensitivity

SPEC PPV SPEC PPV SPEC PPV

Video & sound 0.957 0.818 0.248 0.919 0.401 0.945 0.468

Only video 0.947 0.799 0.231 0.896 0.345 0.923 0.385

TABLE 6.2. 
Fall detection performance results for the Le2i test set. Results from using the full feature set, and for 
only video features are shown. Specificity (SPEC) and positive predictive values (PPV) are given for three 
working points on the ROC curves chosen according to their sensitivity values. ROC AUC: receiver 
operating characteristic area under the curve.
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fall movement. Static camera positions, as likely in the intended monitoring 
system, would prevent this. Also, staff-controlled camera movements imply 
staff observing the fall. 2) A caregiver caught the falling subject before he 
hit the ground, and 3) the subject loses balance and makes several quick 
steps towards the back of the room before falling; the negative Vv from 
the quick upward movement (due to camera placement high on the wall) 
cancelled out the fall movement. Only situation 3) would realistically result 
in a missed fall. There were 13 FPs in total, resulting in an overall FPF of 
0.0025 (SPEC = 0.997, PPV = 0.32) in the SEIN test set. In four/nine videos 
there were no false positives. Two FPs were caused by camera movements 
(controlled by staff), the other 9 FPs occurred during the presence of extra 
people (caregivers) in view.

DISCUSSION
Our fall detection algorithm trained on a benchmark dataset is able to detect 
acted and seizure-related falls in data not used for training. High impact falls 
occurring in any direction with respect to the camera are detected, as long as 
the vertical component of the fall is visible. In most records, acceptable false 
positive fractions are found for 90% sensitivity. We consider these results 
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FIGURE 6.5. 
False positive fraction (FPF) histograms obtained using the 90% sensitivity posterior probability 
threshold in the Le2i test set. The dark green histograms show the percentage of video registrations. The 
amount of time encompassed by the subset of videos within this FPF range is given in light green. The 
first bin of the histogram holds only videos without any false detections.
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proof-of-concept of the method, and a promising outcome for eventual use 
of the method in clinical practice.

Fall detection sensitivity values >90% have been reported with >99% 
specificity in the Le2i database,26,28,41 but when algorithms were applied 
to new datasets with more challenging scenes, more modest performance 
results were obtained (up to 69% specificity at 60-75% sensitivity).16,30,41 
Whereas the performance of our algorithm in the Le2i database (92% 
specificity at 90% sensitivity) seems not fully competitive, we used a 
realistic performance testing scheme which possibly provides less favorable 
outcomes. We tested performance using shorter detection windows (leaving 
relatively more non-fall windows) and a random selection of data from all 
room settings instead of only a subset. We were able to show robustness 
of our algorithm in a separate test set and in new, challenging data with 
real-life falls. Our algorithm might also detect non-seizure falls, but was not 
tested on real-life non-seizure data. As the implementations of published 
algorithms are not publicly available, we could not test them on our SEIN 
test set.

Specificity of our algorithm needs to be improved further and validated 
in ongoing recordings made in real-life environments, where correct 
detection can be especially challenging.16 Training the algorithm on real-life 
movement patterns may improve the algorithm’s ability to handle real-life 
events. Subject segmentation before calculation of the video features could 
possibly improve detection performance, but could also make the algorithm 
more sensitive to occlusions. Using a more fall-specific sound feature (e.g. 
one of the features described in Ref. 37–39), as opposed to the relatively course 
amplitude feature in our current algorithm, might also improve performance. 

Postprocessing of detection output, for example by waiting after an alarm 
before generating new alarms, can reduce the false alarm rate when there is 
some ongoing disturbance. A smart system able to inactivate the detection 
module when a companion is present could prevent false detections due to 
multiple individuals in the scene, whereby it is assumed that the companion 
detects the fall. Similarly, automated inactivation at times of camera 
movements could prevent false positives. Note that using a ‘subject inactivity 
after a fall’ rule, sometimes applied in algorithms to decrease false positives, 
could decrease sensitivity for seizure-related falls, which may be followed by 
excess physical (seizure) activity.

Our fall detection algorithm is designed to detect high impact falls with 
high risk of injury and is less suitable for low impact falls without a clear 
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moment of impact with the floor. An elderly person more sliding than 
falling off a chair for example, would likely not result in detection by our 
algorithm. Falls with soundless impact could in theory also be missed, 
which raises the question if soft flooring could impede detection. Many falls 
in the Le2i database involved subjects falling on mattresses, which were 
detected without problems. Visual inspection of training set sound signals 
confirmed the presence of peaks at times of mattress-falls. This suggests 
that soft flooring will probably not impede detection. 

Our video features are amplitude-based and are dependent on camera 
placement (vertical component needed to detect a fall), camera zoom and 
subject distance to the camera. The proposed features derived from the 
physical fall model are, however, generic, and can be applied to other sensors 
able to quantify vertical velocity. Feature values can be corrected for (focal) 
distance using moving object size, but this may also introduce errors; for 
example in case of falling objects. In the SEIN test set, object size correction 
increased sensitivity (one extra TP) and specificity (two FPs less). Usage of 
depth sensors could provide more precise distance information and improve 
performance.46,47 Although commercially available and affordable, depth 
cameras have a limited distance range (<5 meters48), making them less 
suitable for application in larger living areas. Depth sensors with a longer 
range might become more affordable in time.
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ABSTRACT

OBJECTIVE

To develop a robust automated non-contact algorithm for real-time detection 
of central apneas using video cameras.

METHODS
One video registration with simulated apneas and nine with real-life apneas 
associated with epileptic seizures, each recorded from 3-4 angles, were used 
to develop the algorithm. Videos were preprocessed using optical flow, from 
which translation, dilatation and shear rates were extracted. Presence of 
breathing motions was quantified in the dominant time-frequency spectrum 
by calculating the relative power in the respiratory range (0.1-1 Hz). Sigmoid 
modulation was calculated over different scales to quantify sigmoid-like 
drops in the respiratory range power. Each sigmoid modulation maximum 
constitutes a possible apnea event. Two event features were calculated to 
enable distinction between apnea events and movements: modulation 
maximum amplitude and total spectral power modulation at the time of the 
event. An ensemble support vector machine was trained to classify events 
using a bagging procedure and validated in a leave-one-subject-out cross 
validation procedure.

RESULTS
All apnea episodes were detected in the signals from at least one camera 
angle. Integrating camera inputs capturing different angles increased 
overall detection sensitivity (>90%). Specificity of >99% was achieved with 
individual cameras and integrated camera inputs.

CONCLUSIONS
These results show that it is feasible to detect central apneas automatically 
in video, using this algorithm. When validated, the algorithm may be used 
as an online remote apnea detector for safety monitoring.
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INTRODUCTION
Central apneas occurring during epileptic seizures are usually self-limiting,1 
but when occurring in the aftermath of a seizure may lead to asystole and 
could trigger Sudden Unexpected Death in Epilepsy (SUDEP).2 Observed 
fatal SUDEP cases occurred within minutes after a convulsive seizure,2 
but not all known cases were preceded by a seizure.3 Interventions such as 
repositioning or clearing of airways may have a protective effect preventing 
SUDEP4,5 and automated seizure detection may help alert carers. If a seizure 
was not detected or intervention could not prevent apnea, carers should be 
alerted to apneas to enable timely resuscitation.

Currently apneas are detected by a respiratory inductance plethysmogram 
(RIP), an impedance pneumogram, or a blood oxygen saturation 
measurement. These contact-sensors are, however, not always suitable or 
tolerated. They would need to be worn continuously, may be uncomfortable 
and sensors could come loose during seizures. Some populations such as 
children or people with intellectual disability may not tolerate wearable 
devices and may try to dislodge them. An alternative solution would be 
apnea detection using remote sensors.

There are several modes of remote respiratory monitoring using different 
sensors, but there are few to detect apneas. Algorithms aiming at remote 
apnea detection use radar,6 sonar,7 infrared sensors,8,9 depth sensors,10–12 
and video.13–16 Video cameras are suitable for safety monitoring, as they 
are relatively cheap and sensitive to movement, even at longer distance, 
provided they have suitable resolution. 

Respiration can be quantified in video by using the breathing motions of 
the trunk or the respiratory modulation of the photoplethysmogram (PPG). 
PPG techniques are unsuitable for our application, as they need skin regions 
that may not always be visible (covered or turned away from the camera), 
and color video, which cannot be used at night. Trunk breathing motions 
may be quantified, for example, by calculating translation rates with optical 
flow,17 tracking image points over time,18 or comparing breathing motion 
templates.13 Most published algorithms aim to detect obstructive sleep 
apneas (OSA), often using the characteristic sounds and movements that 
conclude OSA for classification. These algorithms are unsuitable to detect 
central apneas; in which such sounds and movements are absent.

There is no algorithm available that can detect central apneas in video and 
is suitable for (postictal) monitoring. This algorithm needs to be 1) able to 
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work near real-time, providing minimal time delay between apnea onset and 
its detection, 2) able to distinguish between apnea and gross body motion 
when breathing motions cease, 3) independent of camera imaging mode 
to enable daytime and nighttime use, and 4) independent of skin or chest 
visibility and tracking. 

We developed a robust automated algorithm for real-time non-contact 
detection of central apneas in video registrations. Our algorithm detects 
cessation of the measured oscillatory movements of breathing, in the absence 
of gross body motion. Registrations of simulated apneas and real-life, 
seizure-related central apneas were used to develop and test the algorithm in 
a leave-one-subject-out cross-validation scheme. We investigated detection 
performance in a single-camera setup from different angles and propose two 
different strategies to combine signals from multiple cameras to improve 
performance.

METHODS
The algorithm consists of three parts: preprocessing of the video signals, 
event detection and event classification. Video signals from multiple-
camera setups were integrated in two ways: early, during preprocessing, 
or late, after classification. An overview of the algorithm is show in Figure 
7.1. An example of algorithm output after different video processing steps is 
shown in Figure 7.2.

VIDEO REGISTRATIONS
One healthy apnea-simulating subject, and nine subjects with epilepsy 
(but otherwise healthy), who had seizure-related apneas, were included in 
this study. The subjects with epilepsy were selected from a database which 
was prospectively collected (2016-2017) in an epilepsy monitoring unit 
for the development of seizure detection algorithms. Next to the standard 
long-term (≥24 h) synchronized electro-encephalogram, video, sound, 
and electrocardiogram, respiration was quantified for this dataset using 
RIP belts. The study protocol was approved by the ethics committee of 
University Medical Center Utrecht and written informed consent was given 
by all participants or their guardians. All data were handled anonymously.

Subjects were registered with three or four cameras positioned around the 
room, so the face could be brought in view from at least one angle. Subjects 
were not always in view of all cameras. Depending on the position of the 
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subject moving freely in the room, subject-to-camera distance ranges 1-5 
m. Camera rotation, zoom and pan could be controlled by nurses in a 
monitoring room. The registration system started a new video automatically 
after approximately 26 minutes, for storage purposes. Videos were registered 
using a frame rate of 25 frames per second. Each frame, with a total resolution 
of 1080x1920 pixels, contains bordered sub-frames from the four cameras, 
with a 535x959 pixel resolution. Sub-frames were separated after reading for 
further analyses.

15 30 45 60 75 90

5  
2.2
0.9
0.4
0.2

Fr
eq

ue
nc

y 
(H

z)

0 15 30 45 60 75 90
0

0.5

1

Re
la

�v
e 

po
w

er

0

0.5

1

1.5

Sp
ec

tr
al

 p
ow

er

x 10 -3

15 30 45 60 75 90

Sc
al

es

15 30 45 60 75 90
Time (s)

-0.5

0

0.5

Si
gm

oi
d 

m
od

ul
a�

on

-15

-10

-5

Lo
g(

sp
ec

tr
al

 p
ow

er
)

rela�ve respiratory range power
total spectral power

apnea

mean sigmoid modula�on
event

0 10.5

Normalized
spectral 
powerA

B

C

D

-0.3 0 0.3

Sigmoid
modula�on

500
274
150
82 
45 

0 

0 

0 

FIGURE 7.2. 
Example of the output from different analysis steps in the apnea detection algorithm. A 90-second video 
fragment with a movement (at t≈15 s) and an apnea (starting at t≈49 s) is shown (subject SIM1, camera 1). 
(a) Normalized Gabor time-frequency spectrum, showing the dominant component from the five group 
velocity spectra. (b) Relative power in the respiratory range (Rep) plotted together with the total power. 
(c) Sigmoid modulation of the ReP, showing high power at significant signal amplitude drops. (d) Mean 
sigmoid power modulation, calculated over relevant sigmoid scales that fit apneas. Total power is scaled 
logarithmically here. Events were detected at positive mean sigmoid power modulation maxima.
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DATA SELECTION

As peri-ictal central apneas are common,1 the minutes around the seizures 
of each subject in the database were analyzed for the occurrence of apneas. 
During this screening, the signals from the respiratory belts were used to 
locate apneas visually. We presume peri-ictal apneas to be of central origin, 
as has been described in literature.1 We did not confirm this with other 
sensors. For each subject that had peri-ictal apneas, one video was included 
in the dataset in which one or more apneas occurred. One of the subjects 
was 16 years old at the time of registration, the remaining subjects were 
adults. Registration information is shown in Table 7.1.

ANNOTATIONS
To provide ground truth information on the presence and timing of apnea, 
the beginning and end of each apnea was annotated. Annotations were 
based on the signals from one, or if available, both RIP belts. For each apnea 
we noted in which of the cameras the subject was visible, if the subject was 
moving at apnea onset, and whether there were other persons in view of one 
of the cameras. Apneas without gross subject movement or other persons 
in view, and a duration of ≥8 s were considered ‘relevant apneas’. Relevant 
apneas were used during algorithm training and were considered essential 
to detect during algorithm testing. An apnea may be considered relevant in 

ID Age Registration 
length (min)

N 
cameras

N apneas 
(unique)

N relevant 
apneas (unique)

SIM1 29 16.0 4 36 (9) 30 (8)

PAT1 66 6.00 3 2 (1) 0 (0)

PAT2 45 17.7 3 3 (1) 0 (0)

PAT3 53 26.6 4 4 (1) 0 (0)

PAT4 45 26.6 4 3 (1) 2 (1)

PAT5 18 26.6 3 27 (9) 4 (2)

PAT6 38 26.6 4 3 (1) 2 (1)

PAT7 46 26.6 3 6 (2) 0 (0)

PAT8 27 19.9 4 4 (1) 3 (1)

PAT9 16 26.6 4 4 (1) 2 (1)

Total 219 36 92 (27) 43 (14)

TABLE 7.1. 
Dataset information. Relevant apneas were used for training and considered essential to detect. Unique 
apneas may be observed from different angles in multiple cameras.
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a subset of the cameras used in the registration, as a gross body movement 
or second person may only be visible in a subset of the cameras.

PREPROCESSING
Video registrations were preprocessed in order to extract: 1) respiratory 
range oscillatory power, which quantifies the presence of a breathing motion 
signal, and 2) total power, to quantify the presence of gross body movement. 
The preprocessing procedure used here is similar to the procedure used 
in a convulsive seizure detection algorithm previously developed by our 
group.19 The main difference is the focus on the presence of oscillatory 
motions in the frequency range of respiration, instead of the frequency 
range of oscillatory motions in convulsive seizures. A similar preprocessing 
procedure also allows combining the seizure detection algorithm with the 
apnea detection algorithm into one detection system, without adding much 
extra computational cost.

First, subject movement in the video was quantified with optical flow, using 
the Horn-Schunck method,20 implemented as standard in Matlab. From 
the resulting velocity fields five timeseries were derived, representing the 
spatial transformations, or group velocities; translation rates along the 
two image axes, dilatation rates and shear rates. Here, we chose to omit 
rotation, originally the sixth group velocity, for its lack of contribution to 
the respiratory signal.

Next, the spectral content in each of the five group velocities was calculated 
using 200 Gabor filters with exponentially spaced central frequencies, v, in 
the range [0.08,5] Hz. In order to obtain the dominant component of the 
group velocities, we take the maximum of the five Gabor time-frequency 
spectra (Gc):

,   .	 (7.1)

Here, t is defined as time and c defines the corresponding group velocity. An 
example of the Q(t,v) spectrum at the time of breathing, movement, and 
apnea is illustrated in Figure 7.2a. When early integration of video-signals 
was applied, the maximum in (7.1) was taken over the (15 or 20) group 
velocities from all cameras.

Relative power in the respiratory frequency band (ReP) was calculated as the 
power in the 0.1-1 Hz band relative to the total Gabor power (0.08-5 Hz):
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	 (7.2)

In video segments without gross body movement but with the presence of 
breathing motions, the ReP quantity will presumably be close to one. Note 
that we do not aim to quantify the respiration frequency with this quantity, 
but only the presence (and cessation) of respiration. Mean total power (ToP) 
is calculated over all measured frequencies:

.	 (7.3)

An example of the ReP(t) and ToP(t) signals at the time of breathing, 
movement, and apnea is illustrated in Figure 7.2b. Both the ReP(t) and 
ToP(t) signals were scaled logarithmically before further calculations.

EVENT DETECTION
Apneas manifest as sigmoid-like amplitude drops in the ReP(t) signal. To 
quantify drop occurrence we calculated sigmoid modulation for different 
scales to detect drop events of different slopes and amplitudes in ReP(t). This 
technique is analogous to computing a wavelet time-frequency spectrum. 
Here, we compute a sigmoid time-scale spectrum instead, using an aperture 
sigmoid as the generating wavelet template. In this way, the slope (scale) 
of the drop of ReP(t) and its amplitude (relative to the mean value) can be 
estimated. The technique is described in detail below.

First, we define a range of 200 scales sk (k=1,2,...,200), with exponentially 
spaced values in the range [25,500]. For each scale, an aperture sigmoid 
template is defined for window τ:

,   , 	 (7.4)

together with the Gaussian aperture template:

.	 (7.5)

In Equations (7.4) and (7.5) L2 normalization was applied through the 
coefficients , with Nk defined as the squared sum of the kth aperture 
template. The time window in (7.4) and (7.5) is chosen to be of three scale 
lengths, as values outside this range are suppressed by the Gaussian aperture 
factor. Sigmoid time-scale modulation m can then be obtained using the 
convolutions between the filters and the ReP signal:
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	 (7.6)

An example of the sigmoid modulation at the time of breathing, movement, 
and apnea is illustrated in Figure 7.2c.

To quantify the presence of significant respiratory range power drops, we 
calculated the mean sigmoid modulation M over the scales that correspond 
to observed drop times: 

	 (7.7)

Drop times were observed to be between 4.0 and 8.2 seconds (in the SIM1 
registration), and correspond to filters sdrop=[s70,s129]. A positive mean 
sigmoid modulation maximum corresponds to a significant respiratory 
range power drop. Its amplitude constitutes our first event feature, to be 
used in classification. As the M(t) signal fluctuates, many positive maxima 
and thus events will be detected. High maximum values are however only 
found when there is a significant respiratory power drop. For the positive 
local maxima of M we define the set of time points TM as: 

	 (7.8)

For each event, the sigmoid modulation maximum amplitude is defined as:

.	 (7.9)

An example of the mean sigmoid modulation and its positive maxima 
forming the events, is shown in Figure 7.2d.

When an apnea occurs, the total power stays low, or decreases from a low to 
an even lower value. At the time of events due to gross body movement on 
the other hand, the total power either increases (movement onset) or drops 
from a high to a lower value (movement end). An example of the total power 
change at the time of movement and apnea events is shown in Figure 7.2d. 
A second classification feature quantifying the change of total power at the 
time of events may distinguish events due to apneas from events due to gross 
body movements. For each event we therefore calculated the total power 
modulation; comparing the two seconds before, to the two seconds after the 
M maximum:

,   ,   .	 (7.10)
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Presumably, the TPM feature has a small and often negative value for apnea 
events, and a high value (positive of negative) for gross body movement 
events.

All events received a ground truth label according to the apnea annotations: 
1 (apnea) or 0 (not an apnea). A five second annotation margin allowed 
detections slightly earlier than the annotated apnea onset. If multiple events 
were detected within an apnea period, the first event was labelled as the apnea 
event. Other events during the apnea period were disregarded; an apnea can 
only be detected once, but an extra detection during an apnea should not be 
considered a false detection. Relevant apneas were also labelled separately. 
If no events were found during an apnea, the apnea was missed, but as only 
events received a ground truth label, such a false negative would not be 
counted. We therefore corrected performance results by hand to make sure 
any missed apneas without an event are counted as a false negative.

CLASSIFICATION
To automatically classify detected events as “apnea” or “not an apnea”, we used 
a support vector machine (SVM) with a radial basis function (RBF) kernel. 
Optimization of the SVM’s hyperparameters was followed by training, which 
provides SVM model parameters. During both hyperparameter and model 
parameter setting, precision and accuracy were optimized while ensuring 
90% sensitivity for apnea events. Each time an SVM model was trained, the 
misclassification cost for a false negative was increased with 0.1 steps until 
90% sensitivity on its training data was achieved. 

HYPERPARAMETER OPTIMIZATION

We found the SVM hyperparameters that provided high performance while 
generalizing well, using a grid-search. The soft margin constant and the RBF 
kernel scale were tuned to the combination (0.1 and 2, respectively) that 
performed best in cross validation.

TRAINING AND CROSS VALIDATION

A leave-one-subject-out (LOSO) cross validation procedure was used to 
train the event classifier and test its performance on new data not used for 
training. In each of the ten folds the classifier is trained on data from nine/
ten subjects and tested on the remaining subject. The training and testing 
procedure is depicted in Figure 7.3.
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FIGURE 7.3. 
Leave-one-subject-out cross validation procedure. In each of the subject-folds training is performed 100 
times with a bag of randomly selected training events from 9/10 subjects, resulting in an ensemble of 
100 trained SVM models. Testing on the data from the remaining subject is done either 1) on all events 
per camera, providing predictions per camera, which may be integrated later, or 2) on the events from 
the early integrated camera inputs.

In each fold, an ensemble classifier was trained using a bagging (i.e. bootstrap 
aggregating) procedure, for increased classifier stability and accuracy. A 
sample, with replacement, from the training events (bag) was used to train 
a classifier. Each bag sample consisted of a random selection of 50% (with 
a minimum of one) of the relevant apnea events and 10 non-apnea events, 
selected from each camera registration in the training set. This process was 
repeated 100 times in each fold to obtain an ensemble classifier. 

The classifier is subsequently tested on the registration of the remaining 
subject of the fold, with two different sets of input events: the events found 
in the video signals from each individual camera, and the events found in 
the early integrated video signals. A prediction from an ensemble model was 
formed by the majority vote of the 100 predicted labels. Late integration 
of outputs was performed by combining synchronous events, i.e., the 
maximum output label was obtained for events that occurred within 5 s 
over two or more cameras. In practice, one camera providing a detection is 
enough to get a detection from a late integrated camera system.
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FIGURE 7.4. 
Probable camera angles when monitoring a subject. Opposite camera positions form a combination 
(indicated with an equal color), as they may represent the same view when the subject turns. Adapted 
from “Sleep by Gan Khoon Lay from the Noun Project”.

PERFORMANCE EVALUATION

Comparison of predicted labels with ground truth labels yielded the following 
counts: true positives (TP); detected apneas, true negatives (TN); events 
that were correctly classified as not an apnea, false positives (FP); events 
incorrectly classified as an apnea, and false negatives (FN); events that were 
incorrectly classified as not an apnea. With these counts we calculated apnea 
detection sensitivity, false positive rate (FPR), and precision, as follows:

,	 (7.11)

,	 (7.12)

,	 (7.13)

with D defined as the registration duration in hours. Sensitivity for relevant 
apneas was analyzed separately. We also inspected algorithm output and 
video registrations at times of false positives to investigate their causes.

Grouped results were obtained by concatenating all events and comparing 
the predicted labels with the ground truth. Results from all individual 
cameras estimate the predicted performance when a random camera 
angle would be chosen. We also compared found performance with the 
performance using best and worst camera choices, determined post-hoc 
per subject according to 1) sensitivity and 2) false positive rate. Thus, we 
estimate performance when we would have known beforehand the best and 
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worst camera positions to capture apneas. This is done for comparison, and 
does not pose a realistic situation.

We calculated detection latency for relevant apneas, defined as the time 
between the annotated start of the apnea and the detection. To estimate 
real-time latency, Gabor filter windows for respiratory frequencies need to 
be taken into account. These are calculated in the center of windows of 75-
745 frames, effectively adding 1.5 to 15 seconds to real-time latency.

If only a single camera is available, it is important to know beforehand which 
camera placement gives the highest detection sensitivity. To answer this 
question, we analyzed the influence of camera perspectives with respect to 
the subject (as shown in Figure 7.4) on apnea detection sensitivity.

RESULTS
Grouped algorithm test results using predicted labels from the ensemble 
SVMs are shown in Table 7.2. Detailed results per subject and camera can 
be found in Supplementary Table 7.S1. All relevant apneas from all subjects 
were detected in the signals from at least one of the used cameras. In three 
subjects relevant apneas were not detected in all cameras in which they were 
annotated. The apnea in the video of PAT9 was detected in camera signals 
without, but also with a second person in view (who was quietly sleeping in 
the background). With the best camera angles determined post-hoc, 100% 
sensitivity would have been achieved with a false positive rate of 1.09 per 
hour. Mean detection latency for detected relevant apneas was 1.7 s (SD: 1.4 
s). Mean online latency is estimated to be in the range of 2.7-16 s.

Camera / integration 
method

Sensitivity (%) 
relevant apneas 

(N)

Sensitivity (%) all 
apneas (N)

False 
positive 
rate (/h)

Specificity 
(%) for 
events

All individual cameras 83.7 (43) 46.7 (92) 2.17 99.1

best choice 100 (14) 63.0 (27) 1.09 99.5

worst choice 80.0 (10) 37.0 (27) 3.28 98.5

late integrated 100 (14) 66.7 (27) 6.57 97.6

early integrated 92.9 (14) 51.9 (27) 1.64 99.3

TABLE 7.2. 
Grouped algorithm test results, using majority vote labels from the trained ensemble models.



145VIDEO-BASED DETECTION OF APNEAS

7

With late camera input integration 100% sensitivity was achieved, with a 
FPR of 6.6 per hour. Late integration resulted in a higher FPR than found 
with randomly chosen cameras, and also higher than found with the post-
hoc determined worst camera choices. With early camera input integration, 
13/14 unique relevant apneas were detected. Closer inspection of the 
signals at the time of the missed apnea (PAT6) revealed a slight movement 
at apnea onset, mainly visible in one of the cameras. For this reason the 
apnea presumably was detected in the single-camera signals (and in the 
late integrated outputs), but not in the early integrated video signals, which 
included the movement as a dominant component. 

Best single-camera sensitivity was achieved with angle combination 
frontocaudal-dorsocaudal (100%). Sensitivity was also high for the 
combination frontal-dorsal (92%). Three/six frontal view detections 
involved apneas of awake subjects sitting upright. Sensitivity was lower 
when the subject was registered from a more rostral view; 84% for the 
combination dorsorostral-frontorostral, and 50% from a rostral viewpoint. 
No registrations were made from a caudal view. 

Inspection of algorithm output at times of false detections showed several 
causes for false detections. Coincidental detections, in which a very small 
movement precedes a larger movement that causes the respiratory power to 
drop, caused 68% of single-camera false detections. Of the 13 coincidental 
false detections, 3 were also in the early integrated results. When inspecting 
the respiratory belt signals, three “false” detections turned out to be short 
apneas (~5 s) and one was caused by a respiratory frequency drop to 0.1 Hz. 
In one camera registration providing a closeup of the subject’s face during 
sleep, eyelid myoclonias caused two false detections. These false detections 
were also seen in the results from the early integrated signal.

DISCUSSION
Our results show that it is feasible to detect apneas automatically in video, 
using our algorithm. All apneas in all subjects were detected in the signals of 
at least one camera, with acceptable false detection rates. The algorithm can 
quickly detect cessation of the breathing motion signal, while distinguishing 
cessations due to apneas from gross body movements. The algorithm 
functions with color and intensity video and does not need uncovered body 
regions in view to quantify breathing motions and detect apneas.
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When available, integrating multiple camera signals early and late in the 
algorithm improves detection sensitivity, as respiration movements can 
be captured from different angles. Late integration, i.e., combining any 
synchronous detections over cameras, may, however, induce a high false 
detection rate. An event leading to a false detection in any camera will 
cause a false detection in the late integrated results. Early integration, 
i.e., combining video time-frequency signals before event detection and 
classification, typically results in less false detections. Coincidental false 
detections are less likely, because small movements that cause the total power 
signal to fit the apnea model can be cancelled out during signal integration. 
Detection sensitivity may however be affected by gross body movement at 
apnea onset in one of the camera signals. If further study verifies that (near) 
SUDEP-related apneas do not involve subject movements at apnea onset, 
early integration may be preferred over late integration. 

When only a single camera is used, detection sensitivity depends on the 
ability to capture the respiratory movements, to detect their arrest. Trunk 
oscillatory movements of breathing are largest in the craniocaudal and 
dorsoventral directions.21 Best perspectives have camera axes perpendicular 
to these movement directions. Cameras should be placed high enough 
to get a good overview of the subject. Our results indicate that using a 
frontocaudal-dorsocaudal camera angle combination likely results in the 
best performance. Dorsal-frontal and dorsorostral-frontorostral viewpoints 
may also provide good detection sensitivity when the camera is placed high 
enough. Rostral views provided only mediocre apnea detection performance, 
and should be avoided. Closeup views of the subject’s face and shoulder 
region may provide a good respiratory signal, but false detections might be 
caused by small movements. 

Apneas are not necessarily missed when there is a second person in view of 
the camera, provided that the second person is also showing no gross body 
movements. The second person’s breathing movements add to the respiratory 
range power, but if only one of the persons stops breathing, the power will 
drop nonetheless. It will probably help if the subject to monitor is closest to 
the camera, as the subject’s respiration will then influence respiratory range 
power the most. Four of ten subjects were covered by blankets when their 
apneas occurred, which did not prevent apnea detection. This suggests that 
apnea detection is not hampered by being covered. The influence of covers 
on detection should be further investigated, as this is a likely occurrence in 
practice.
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There are no other central apnea detection algorithms which meet all 
requirements to be applicable for safety monitoring. Whereas a previously 
reported algorithm cannot distinguish breathing motion breaks due 
to movement from actual apneas, it comes close to applicability.16 Our 
approaches are similar; quantifying the presence of periodicity to detect 
apneas (periodicity cessation). In a dataset with 17 apneas, the algorithm 
detected 90% of apneas with a latency of 30 s and a specificity of 78%, which 
translates to an FPR of 79 /h with their windowing procedure. The lower 
specificity compared to our algorithm might be explained by the algorithm’s 
inability to take gross motion into account when classifying apneas.

Our algorithm enables fast detection of apneas, with online detection 
latencies estimated to be between 3 and 16 seconds, while latencies of  
>20 s are common in other studies.15,16 The difference in detection delay can 
be explained by the respiration-free signal window needed by most other 
algorithms to measure the absence of periodicity and detect an apnea. Our 
algorithm detects the moment of cessation of breathing motions, and does 
not need an large signal window free of breathing motions before it detects 
an apnea. 

A possible limitation of our algorithm is that it can only detect apneas at 
their onset. If something/someone in view of the camera causes a gross 
motion during apnea onset, the apnea might be missed. Other movement 
influences might be prevented by confining camera view as much as possible 
to the subject. Subject segmentation before quantifying the presence of 
breathing motions may also improve algorithm performance. Segmentation 
may, however, also make the algorithm more sensitive to occlusions and 
heavier computationally.

Obstructive apneas occurring during sleep, which may or may not indicate 
an obstructive sleep apnea (OSA) disorder, may cause algorithm detections. 
These apnea detections could be considered true positives, and may help 
classify undiagnosed OSA cases. OSA is a common disorder, however, and 
people with the disorder can have frequent apneas throughout the night 
(severe cases have >30 /h),22 which may result in alarm fatigue. OSA detection 
with our algorithm was not studied, and should be further investigated.

A possible solution for high false detection rates due to OSA or other causes 
might be switching on apnea detection only after detection of a convulsive 
seizure (automatically, e.g. using,23 or by a carer). As virtually all known 
cases of SUDEP followed within 11 minutes after a convulsive seizure,2 apnea 
monitoring during the half hour following a convulsive seizure might suffice. 
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Future work should focus on further improvement and validation of 
the algorithm. A larger dataset with central apneas captured from good 
camera angles may improve algorithm performance and enable algorithm 
validation. Using flexible posterior probability outputs (prediction ranging 
from 0 to 1) instead of label outputs might further optimize sensitivity, but 
this may also increase the false detection rate. This might be acceptable if 
alerts can be easily verified by a caregiver who is close by, monitoring the 
video stream. Validation data should include central apneas occurring after 
convulsive seizures, to verify that these apneas indeed do not involve gross 
body movements. Long-term unselected registrations should be used to 
demonstrate robustness to the variety of (normal) breathing patterns and 
real-life false detection rates. Other application areas for the algorithm 
might also be explored, such as remote neonatal monitoring in the intensive 
care.

CONCLUSIONS
We present a novel automated algorithm to detect central apneas in video, 
based on the arrest of oscillatory breathing motions. When fully validated, it 
may be used as an online remote apnea detector, avoiding the use of contact 
sensors. Further studies are warranted.
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SUPPLEMENTARY MATERIALS
TABLE 7.S1
Algorithm test results per camera for each subject. A dash in both sensitivity columns for relevant and 
all apneas means that the subject was not in view of that camera during the apnea(s). A dash in only the 
relevant apneas column implies that the apnea(s) registered from that camera angle were non-relevant. 
Cameras in which performance was best are underlined per subject.

ID Camera
Sensitivity (%) 
relevant apneas 

(N apneas)

Sensitivity (%) 
all apneas 
(N apneas)

False 
positive 
rate (/h)

Specificity  
for events 

(%)

SIM1 1 87.5 (8) 77.8 (9) 0 100

2 87.5 (8) 77.8 (9) 0 100

3 100 (8) 88.9 (9) 0 100

4 33.3 (6) 22.2 (9) 0 100

late integrated 100 (8) 88.9 (9) 0 100

early integrated 100 (8) 88.9 (9) 0 100

PAT1 1 - (0) - (0) 0 100

2 - (0) 0 (1) 0 100

3 - (0) 0 (1) 0 100

late integrated - (0) 0 (1) 0 100

early integrated - (0) 0 (1) 0 100

PAT2 1 - (0) 0 (1) 3.4 98.6

2 - (0) 0 (1) 3.4 98.7

3 - (0) 0 (1) 3.4 98.6

late integrated - (0) 0 (1) 3.4 98.9

early integrated - (0) 0 (1) 3.4 98.7

PAT3 1 - (0) 0 (1) 0 100

2 - (0) 0 (1) 2.3 99.0

3 - (0) 0 (1) 0 100

4 - (0) 0 (1) 2.3 99.0

late integrated - (0) 0 (1) 4.5 98.5

early integrated - (0) 0 (1) 2.3 99.0

PAT4 1 100 (1) 100 (1) 6.8 97.2

2 0 (1) 0 (1) 2.3 99.1

3 - (0) 0 (1) 9.0 96.5

4 - (0) - (0) 6.8 97.1

late integrated 100 (1) 100 (1) 22.6 92.5

early integrated 100 (1) 100 (1) 0 100
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PAT5 1 100 (2) 33.3 (9) 2.3 99.0

2 100 (2) 33.3 (9) 0 100

3 - (0) 0 (9) 2.3 99.0

late integrated 100 (2) 44.4 (9) 4.5 98.3

early integrated 100 (2) 33.3 (9) 2.3 98.9

PAT6 1 - (0) - (0) 0 100

2 100 (1) 100 (1) 0 100

3 100 (1) 100 (1) 0 100

4 - (0) 0 (1) 0 100

late integrated 100 (1) 100 (1) 0 100

early integrated 0 (1) 0 (1) 0 100

PAT7 1 - (0) 0 (2) 0 100

2 - (0) 100 (2) 0 100

3 - (0) 100 (2) 6.8 97.0

late integrated - (0) 100 (2) 6.8 97.4

early integrated - (0) 0 (2) 0 100

PAT8 1 100 (1) 100 (1) 9.0 96.2

2 100 (1) 100 (1) 0 100

3 100 (1) 100 (1) 0 100

4 - (0) 0 (1) 0 100

late integrated 100 (1) 100 (1) 9.0 96.7

early integrated 100 (1) 100 (1) 9.0 96.2

PAT9 1 100 (1) 100 (1) 0 100

2 - (0) 0 (1) 4.5 98.2

3 - (0) 100 (1) 4.5 98.1

4 100 (1) 100 (1) 2.3 99.1

late integrated 100 (1) 100 (1) 6.8 97.7

early integrated 100 (1) 100 (1) 0 100

Grouped all individual 
cameras 83.7 (43) 46.7 (92) 2.2 99.1

best choice 100 (14) 63.0 (27) 1.1 99.5

worst choice 80.0 (10) 37.0 (27) 3.3 98.5

late integrated 100 (14) 66.7 (27) 6.6 97.6

early integrated 92.9 (14) 51.9 (27) 1.6 99.3
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SUMMARY
In specialized epilepsy care, data streams are often monitored and analyzed 
real-time by a human observer to detect events. Such events can be ictal (i.e. 
seizures) or interictal (e.g. epileptic spikes or high-frequency oscillations) 
transient signals produced by the brain, which usually occur unexpectedly. 
In the epilepsy monitoring unit (EMU) for example, seizures need to be 
detected by staff so they can go to the patient to reduce risks arising from 
seizures (e.g., treat injuries) and to perform testing during the seizure to 
aid diagnosis. In the operating room, the electrocorticogram (ECoG) is 
monitored for spikes or high-frequency oscillations when a tailored surgical 
epilepsy resection is performed. The locations and frequencies of these 
markers help delineate the area of brain tissue that needs to be resected for 
the patient to become seizure free. And in homes of people with epilepsy, 
monitoring for (results of) dangerous seizures can improve safety by 
indicating whether someone is in need of assistance and at risk of sudden 
death.

Knowledge about epilepsy-related events can aid diagnosis or direct 
treatment, and can also indicate the need of immediate assistance. It 
might be of vital importance that these events are noted directly upon 
occurrence. The visual observation usually performed to detect these events 
is time-consuming, subjective, and sensitive to distractions. Consequently, 
important events could be missed, which might impair safety and the 
quality of diagnosis and treatment. Automated markers can help detect 
occurrences and characteristics (e.g. timing and location) of events in the 
data streams, and in addition might be able to identify data streams (e.g. 
epochs on specific channels) that are likely to contain events.

The aim of this thesis was to improve situations of real-time data monitoring 
for event detection in epilepsy, by constructing and validating automated 
algorithms to detect markers of epilepsy.

PART I: AUTOMATED MARKERS TO ENHANCE 
DIAGNOSIS

In the epilepsy monitoring unit (EMU), seizures need to be detected by staff 
so they can go to the patient to reduce risks arising from seizures (e.g. treat 
injuries) and to perform tests during the seizure to aid diagnosis. Online 
seizure detection algorithms might help detect seizures that could have 
otherwise been missed or recognized too late. The added value of seizure 
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detection algorithms to the detection by already present staff is, however, 
unclear.

In Chapter 2 we investigated the added value of applying algorithms 
for online seizure detection in the electroencephalogram (EEG). We 
retrospectively analyzed a representative sample of the EEG-video 
recordings encountered in the EMU (with and without seizures), using two 
commercially available seizure detection algorithms. We found that EEG 
seizure detection algorithms may improve the response to seizures on the 
EMU, since they increase both the total number of seizures detected and the 
speed of detection.

PART II: AUTOMATED MARKERS TO ENHANCE 
TREATMENT

Invasive presurgical or intraoperative EEG can be monitored for interictal 
events to help delineate the brain tissue that needs to be resected, in order 
to prevent seizures. Surgical removal of cortex showing interictal high-
frequency oscillations (HFOs), in particular fast ripples (250-500 Hz), 
has been associated with post-operative seizure freedom. Visual analysis 
to find these events is, however, time consuming and, when performed for 
surgery tailoring, requires the presence of expert reviewers during surgery. 
An automated algorithm is needed that can independently, reliably, and 
reproducibly delineate the epileptogenic zone to be resected during surgery. 

In Chapter 3 we presented a novel algorithm - autoregressive model 
residual variation (ARR) - for this purpose. ARR reflects the amount of 
non-harmonicity in the signal’s high-frequency components. We tested 
the ability of ARR to approximate the seizure onset zone (SOZ), a surrogate 
marker for the epileptogenic zone, in interictal intracranial (depth) 
electroencephalograms that were obtained presurgically. We found that 
ARR values were higher inside SOZ areas than in channels outside the SOZ. 
We concluded that ARR may be applied to identify channels in the SOZ 
automatically in interictal intracranial EEGs, possibly providing a new way 
to delineate the epileptogenic zone.

In Chapter 4, we adjusted the ARR algorithm to reduce the influence 
of artefacts and tested the potential of the new algorithm to identify 
epileptogenic tissue during surgery. The autoregressive model residual 
modulation (ARRm) is less sensitive to common, but visually hard to spot, 
peri-surgical artefacts. We found that high ARRm values measured in the 
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post-resection ECoG  were associated with poor postsurgical outcome. 
We concluded that the ARRm algorithm might enable intra-operative 
delineation of epileptogenic tissue by providing ‘on demand’ interpretation 
per electrode about the need to remove underlying tissue to optimize the 
chance of seizure freedom.

PART III: AUTOMATED MARKERS TO ENHANCE SAFETY 
MONITORING

In homes of people with epilepsy, monitoring for (results of) dangerous 
seizures can improve safety by indicating whether someone is in need 
of assistance and at risk of sudden death. Automated real-time seizure 
detection systems can help alert caregivers, but popular wearable sensors 
are not always tolerated. We aimed to design a remote monitoring system 
with three modules to detect convulsive seizures, falls, and apneas. 

In Chapter 5 we established performance of a non-contact convulsive 
seizure detection algorithm, by determining a detection threshold and by 
investigating detection performance as a function of several variables. The 
algorithm calculates power in the 2-6 Hz range (convulsive seizure spectral 
footprint) relative to the total spectral power in group velocity signals 
derived from video sequence optical flow. With the detection threshold 
determined in a training set, all convulsive seizures were detected in the test 
set of new subjects (100% sensitivity), with an acceptable false detection 
rate. This algorithm could improve safety unobtrusively by automated real-
time detection of convulsive seizures in video registrations.

In Chapter 6 we presented an automated algorithm for remote detection of 
falls, based on a physical model of a fall, aiming at universality and robustness. 
The algorithm uses vertical velocity and acceleration features from optical 
flow outputs, corrected for distance from the camera using moving object 
size estimation. A sound amplitude feature was used to increase detector 
specificity. Applying the trained algorithm to an acted dataset and real life 
data with seizure-related falls resulted in high sensitivity and specificity 
for detection of falls. These results reflect the algorithm’s robustness and 
confirms the feasibility of detecting falls using this algorithm.

In Chapter 7 we presented a novel automated algorithm for real-time 
detection of apnea events in video, aiming at fast detection when the 
subject is immobile. Our algorithm is based on detecting a cessation of the 
measured oscillatory movements of breathing, in the absence of gross body 
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motion. We used registrations of simulated apneas and real-life peri-ictal 
central apneas, each recorded from multiple angles, to develop and test the 
algorithm. All apnea episodes were detected in the signals of at least one 
camera. Integrating camera inputs capturing different angles increased 
detection sensitivity (>90%). Specificity of >99% was achieved with both 
individual cameras and integrated camera inputs. These results show that 
it is feasible to detect central apneas automatically in video, using the 
proposed algorithm.

CONCLUSION
Automated markers can enhance epilepsy diagnosis, treatment, and safety 
monitoring by providing real-time, objective, and fast identification of 
epilepsy-specific events, or data streams likely to contain events. The work 
in this thesis contributed new algorithms to detect tissue to be removed 
during epilepsy surgery, and to remotely detect falls and apneas using 
video. This thesis also adds knowledge about the validity and added value 
of automated seizure detection algorithms in epilepsy monitoring units and 
at home. With the construction and validation of these algorithms to detect 
markers of epilepsy, we brought automated markers a step further towards 
clinical and domestic practice.

DISCUSSION
In this section we will view the work of this thesis in a broader perspective. 
We will discuss what we have learned and what challenges are yet to be 
overcome. We will also discuss how future use of the automated markers 
could look, and what studies are needed to get there.

CHALLENGES OF AUTOMATED MARKER 
PERFORMANCE TESTING

The performance of automated markers determines their applicability 
in clinical practice. Obtaining realistic and usable information on the 
performance can, however, be challenging. The ultimate test, implementing 
the marker online and comparing its use with the current situation in terms 
of outcome, is often infeasible; real-time functionality may be lacking and 
a large amount of time and data is needed to collect enough performance 
information (e.g., wait for seizures). Therefore, marker performance is 
usually estimated retrospectively, using offline data. The development 
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phase of a marker determines the level of evidence needed. Showing cross-
validation performance results in the selected, ‘clean’ training data might 
suffice for a proof of principle, whereas new, unselected, and continuous 
registrations are needed to show what real-life performance of a marker 
would be.1 

The definition of ‘good performance’ is determined by the marker’s intended 
purpose and study objectives. In seizure detection, sensitivity is usually 
favored over specificity, as the damage of a missed seizure is greater than 
the cost of a false alarm. For this reason we tuned our detection algorithms 
for convulsive seizures, falls, and apneas to have high sensitivity. In contrast, 
high specificity is favored when delineating the epileptogenic zone; the 
surgeon wants to be sure of the non-epileptogenicity of remaining tissue after 
resection. Also, the performance of the combination user and automated 
marker may be more relevant than the performance of the automated 
marker alone. It is improbable, for example, that automated seizure 
detection algorithms would be applied on an EMU without nurses present 
to co-monitor the patient’s EEG-video stream. Furthermore, detection 
latency may be decisive when assessing feasibility of online marker usage. 
Usage of ARRm to delineate the epileptogenic zone during surgery is only 
feasible when it can provide analysis results within seconds. In addition, 
early intervention after a convulsive seizure or subsequent postictal apnea 
might be life-saving in cases of near-SUDEP, thus short detection latencies 
are required.2,3 The latency of the entire system encompassing detection and 
intervention is, however, determined by its weakest link; this may well be 
caregiver travel time when a person with epilepsy lives alone.

Another challenge when testing automated markers is unavailability or 
incorrectness of a ground truth needed to define true and false detections. 
The ground truth is unavailable in studies focused on delineating the 
epileptogenic zone, i.e. the minimal resection to result in seizure freedom. 
When a patient became seizure free after surgery, the resected tissue 
presumably included the epileptogenic zone. The only plausible assumption 
with this information, however, is that marker detections outside the 
resected area are false positive detections; the resected tissue need not be 
entirely epileptogenic. Resections that did not result in seizure freedom 
provide no reliable information about epileptogenic zone location. In 
practice, researchers often use approximations of the epileptogenic zone, like 
the seizure onset zone, or they make comparisons with other markers like 
spikes and high-frequency oscillations. Similarly, comparison of automated 
seizure detector output with the current gold standard for seizure detection, 
synchronized video-EEG registration, is infeasible when collecting real-life 
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data. Researchers are therefore dependent on achievable reference standards 
like seizure diaries or video recordings.

Flexible handling of data labels using individual case-knowledge enables 
correction when the ground truth is unavailable or flawed and permits, 
ultimately, for markers to transcend a flawed reference standard. Alleged 
false detections might be questioned in some cases: epileptic events are not 
rarely missed by patients themselves4 or even during monitoring by trained 
staff.5,6 Also, automated markers can reveal subtle events virtually invisible 
with the naked eye, in video (e.g., subtle seizure onsets7 or apneas8) and 
electroencephalographic registrations (e.g., interictal non-linear or high-
frequency activity9,10 or seizures11). Careful review by experts of recordings at 
times of marker detections allowed us to improve reference standard quality; 
some artefacts were relabeled HFO in Chapter 4, some alleged convulsive 
seizures were relabeled as hyperkinetic seizures in Chapter 5, and some 
false detections were in reality short apneas in Chapter 7.

IMPROVING AUTOMATED MARKERS
There are many ways to improve an automated marker, and each of its typical 
components (see Figure 8.1) could provide opportunities. Investigating 
which components of the algorithm impact the performance parameter to 
be improved the most, can help find those opportunities.

Increasing the reach of sensor sampling might improve marker sensitivity. 
Detecting nothing can mean three things; either nothing is happening, the 
algorithm is not detecting an event (false negative), or there is a spatial or 
temporal sampling problem (technically also a false negative, but not the 
fault of the algorithm). When marker sensitivity is low, checking whether 
the input signal(s) can pick up events to be detected may be worthwhile. 
Seizures or interictal events to be detected using EEG, for example, may 
involve brain tissue that is not sampled adequately; e.g., epileptic activity in 
tissue too far away from the electrodes (inside a sulcus or deeper structures), 
or the sampling frequency or electrode density is too low to pick up subtle 
signals. Or perhaps the event you are trying to detect with a video camera is 
happening outside the field of view. Having a sound hypothesis on where to 

measure calculate
features classify post-

processINPUT OUTPUTpre-
process

FIGURE 8.1. 
Automated marker algorithm design.



164 CHAPTER 8

place sensors, increasing the spatial reach and having an adequate sampling 
frequency can potentially help solve these issues. Also, integrating signals 
from cameras capturing a subtle event from different angles can increase 
detection sensitivity, as we showed for apneas in Chapter 7.

Understanding of the dynamics of events can lead to model-based 
features, which allow rapid advancement of detection strategies, as no 
lengthy trial-and-error attempts are required. Also, using model-based 
features provides insight in algorithm functioning, which facilitates tracking 
down potential sources of error if necessary. In fact, all features included 
in the automated markers of this thesis are based on models (or model 
hypotheses) of the events to detect.

Adding extra input signals or features might improve marker sensitivity, 
specificity and/or latency, depending on how they are implemented in 
an algorithm: early integration, by adding new inputs and features to the 
existing algorithm, or late integration, in which additional classifiers or 
classifier outputs are combined (e.g. using a voting scheme). New signals 
or features can be especially interesting when they add information not 
available before. Complementing seizure detection based on EEG by adding 
a heart rate feature, for example, might improve sensitivity and latency, 
by capturing seizure activity not detectable in EEG.12 In our fall detection 
algorithm, we improved detector specificity by adding an extra sound level 
feature, using early integration. Even features that are calculated using the 
same source signal can add information and improve marker performance. 
In one example of a seizure detection algorithm, as many as 2974 EEG-
features were calculated in time-, frequency-, and time-frequency domains, 
from which a feature subset was selected as input for the classifier.13 Features 
should be carefully selected (or extracted) to provide a suitable feature set 
for the automated marker’s classification task. While adding new signals or 
features to an automated marker may improve one performance parameter, 
this improvement may go at the cost of other performance parameters.

Post-processing of classifier output could also improve automated marker 
performance. In a detection/alarming system, for example, waiting after an 
alarm before generating new alarms can reduce the false alarm rate when 
there is some ongoing disturbance.

Personalization of automated markers might improve performance 
in some cases, and is usually achieved by changes in the classifier of the 
algorithm. Generic algorithms provide a plug-and-play solution, with 
algorithm settings based on a typically large and representative group of 
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subjects. Every person is different however, and when generic algorithms 
fail, performance improvement by personalization may be attempted. To 
personalize or tune a detection system, sufficient data (e.g., seizures) and 
expert annotations are needed. Waiting to collect enough seizures for 
algorithm tuning might take weeks or months when the subject has a low 
seizure frequency. A self-learning algorithm could render waiting for events 
unnecessary, because it can tune the algorithm with each new observation. 
Subjects may also label each seizure-event after it has (or has not) happened, 
after which the classifier might be updated.14 Personalization processes can, 
however, make the algorithm vulnerable; incorrect labelling and outliers 
can decrease overall performance. Therefore, personalization should only 
be attempted when needed, and by professionals in a controlled setting, 
with the possibility to check and analyze missed events and false detections.

FUTURE PERSPECTIVES
Let us look ahead 10 years. If we assume that epilepsy will not yet have been 
eliminated by that time, automated markers have the potential to make life 
of people with epilepsy, their caregivers, and healthcare professionals a bit 
easier. How would the use of these automated markers look, and what is 
needed to achieve this objective? 

The quality of diagnostics and patient safety on the EMU will likely be 
improved by using software that automatically detects epileptic seizures. 
EMU staff and automated algorithms complement each other; together 
they detect seizures more often and earlier than either staff or algorithms 
alone. In this way, staff response to seizures can be improved, which helps 
ensure patient safety, and improves the quality of the diagnostic process 
because of timely assessment of patient consciousness and cognition. The 
current state of art regarding performance allows implementation and 
online use, which should be the focus of future research. Because seizure 
detection software needs access to the online, real-time EEG, a software-
specific coupling with the EEG registration software needs to be established. 
It might be interesting to also investigate the added value of different levels 
of alarming; as algorithms may have various levels of certainty of seizure 
occurrence. A high level of detection certainty warrants high level (action 
calling) alarming, but a lower level of detection certainty should perhaps 
only alert staff to pay close attention to the subject. Multi-level alarming 
might reduce the chance of alarm fatigue and consequent desensitization or 
disabling of alarms by staff.15
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Automated identification of epileptogenic tissue may improve therapeutic 
outcome in certain cases of epilepsy. Epilepsy surgery tailoring, for example,  
may be guided by automated markers that delineate the epileptogenic zone 
using ECoG. A device with electrodes might measure, calculate and directly 
point out tissue areas – under specific electrodes - to be removed, providing 
also the level of prediction certainty. Resection tailoring with successful 
markers could increase the chance of seizure freedom after epilepsy surgery, 
and decrease the chance of negative side effects, like loss of function, thanks 
to a smaller resection. While a lot of research is being performed on many 
different electrophysiological markers, there is no consensus on what is the 
best marker to delineate the epileptogenic zone. Marker validation studies 
typically show many cases in which the marker was successful, but also 
exceptions in which the epileptogenic zone is missed or presumably non-
epileptogenic areas are detected.16–21 It is possible that a combination of 
markers, measuring different signal characteristics, is needed to adequately 
point out tissue areas to be removed. Future work might therefore focus 
on a machine learning approach on a big dataset. Different features with 
shown classification power (such as ARRm, spikes, ripples and fast ripples) 
and relevant patient and epilepsy data might be integrated for improved 
classification of tissue epileptogenicity. 

When therapeutic approaches have been unable to provide cure, those 
suffering from therapy-resistant seizures may be safeguarded  by automated 
systems. People with epilepsy may be monitored remotely in their home 
by a system automatically detecting the occurrence of convulsive seizures, 
falls, and apneas using video and audio, and subsequently alarming a 
caregiver. Timely detection of these events might decrease risks of sudden 
death and injury by enabling care to be given quickly. More patients would 
have access to automated seizure detection, since patients who could not 
be monitored using currently available bed-attached or worn sensors might 
be monitored using our remote detection system. Further developments 
toward this monitoring system should include improving the specificity of 
the fall detection algorithm. Using a fall-specific sound feature instead of 
the currently used sound amplitude feature might decrease the number of 
false positives. Our apnea detection algorithm should be further improved 
by training it on a large dataset with central apneas captured from good 
camera angles. Offline validation of the fall and apnea detection algorithms 
should follow, using real-life uninterrupted data streams. The three validated 
algorithms may be combined in a smart monitoring system that detects 
convulsive seizures, falls, and apneas. This system might automatically 
activate the right detection module when needed, preventing false detections 
that could occur when all modules run continuously. The apnea detection 
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module might for example be activated after detecting a convulsive seizure, 
and the monitoring system might automatically be put in ‘sleep mode’ when 
a companion is present in the same room as the subject. 
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NEDERLANDSE SAMENVATTING |      
DUTCH SUMMARY

In de specialistische epilepsiezorg monitoren en analyseren mensen vaak 
informatiestromen om belangrijke events te vinden. Dit zijn kortdurende 
gebeurtenissen die we kunnen meten bij mensen met epilepsie. Een event 
kan bijvoorbeeld een aanval zijn, of een korte signaalpiek gemeten in het 
hersenfilmpje (EEG) van iemand met epilepsie. Het moment of de locatie 
van het optreden van events verschaft informatie over de juiste diagnose, 
behandeling of over de noodzaak van onmiddellijke (medische) hulp als 
iemand een epileptische aanval heeft.

Om events te detecteren, of op te merken, moeten mensen vaak meerdere 
signalen of videobeelden van patiënten tegelijk in de gaten houden. Deze 
observatie is tijdrovend, subjectief en gevoelig voor afleiding. Hierdoor 
kunnen belangrijke gebeurtenissen gemist worden, wat de veiligheid en 
de kwaliteit van diagnose en behandeling in gevaar zou kunnen brengen. 
Automatische markers kunnen hierbij helpen, door de events voor ons te 
detecteren. Een algoritme, of computerprogramma, geeft automatisch een 
schatting van de locatie of het moment van optreden van events. 

In dit proefschrift proberen we met automatische markers het monitoren 
van informatiestromen om events te detecteren makkelijker te maken. We 
maakten zelf algoritmes, en onderzochten hoe goed ze werken. Op deze 
manier proberen we de diagnose, behandeling en veiligheidsmonitoring bij 
mensen met epilepsie te verbeteren.

In de epilepsie monitoring unit worden mensen met een vermoedelijke 
epileptische aandoening langdurig onderzocht met EEG en video. 
Medewerkers moeten aanvallen tijdig opmerken, zodat ze naar de patiënt 
kunnen gaan. Medewerkers kunnen dan risico’s bij een aanval verkleinen 
door bijvoorbeeld verwondingen te behandelen en tests tijdens de aanval 
uitvoeren om een diagnose te ondersteunen. Automatische algoritmes 
zouden aanvallen kunnen helpen detecteren welke anders gemist of te laat 
opgemerkt zouden zijn. We onderzochten daarom de toegevoegde waarde 
van algoritmes die automatisch aanvallen detecteren in het EEG. We vonden 
dat de algoritmes de reactie op aanvallen kunnen verbeteren, omdat ze het 
totale aantal gedetecteerde aanvallen en de detectiesnelheid vergrootten.

Als het niet lukt om aanvallen met medicijnen onder controle te krijgen, 
wordt soms epilepsie chirurgie overwogen. De operatie heeft als doel precies 
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en alleen dat weefsel te verwijderen waarmee de patiënt aanvalsvrij wordt; 
we noemen dit weefsel epileptogeen. Om dit stukje weefsel af te grenzen 
kan het nodig zijn om voorafgaand aan, of tijdens de operatie, een invasief 
EEG - een meting in of op de hersenen – te maken. Er is een automatisch 
algoritme nodig om met het invasieve EEG het epileptogene weefsel af te 
kunnen grenzen. We maakten een algoritme met dit doel. We zagen dat het 
algoritme hogere waarden mat in weefsel dat waarschijnlijk epileptogeen 
was. Patiënten waarbij er na de operatie nog steeds zulke hoge waarden 
gemeten werden, waren bovendien vaak niet aanvalsvrij. We concludeerden 
dat ons algoritme bruikbaar zou kunnen zijn om epileptogeen weefsel af te 
grenzen, om mogelijk de kans op aanvalsvrijheid na een operatie te vergoten.

Thuis monitoren op gevaarlijke aanvallen kan de veiligheid vergroten 
door aan te geven of iemand hulp nodig heeft en risico loopt op plotse 
dood bij een aanval. Automatische aanvalsdetectie-systemen kunnen 
helpen zorgverleners te waarschuwen, maar populaire draagbare sensoren 
(wearables) worden niet altijd verdragen. Ons doel was daarom om een 
contactloos monitoring systeem te ontwerpen, dat gevaarlijke aanvallen, 
vallen en ademstops kan detecteren in videoregistraties. Eerst onderzochten 
we hoe goed een detectie-algoritme convulsieve aanvallen, het meest 
risicovolle aanvalstype, kan opmerken. Het algoritme detecteerde alle 
convulsieve aanvallen in een grote test-dataset, met een acceptabel aantal 
valse alarmen, en zou gebruikt kunnen worden om de veiligheid te vergroten. 
Daarnaast maakten en testten we een algoritme om vallen te detecteren. 
We maakten hiervoor gebruik van videoregistraties met geacteerde vallen 
en echte vallen door een aanval. Het algoritme detecteerde veel van de 
vallen, met weinig valse alarmen. Deze resultaten tonen de haalbaarheid 
van het detecteren van vallen met ons algoritme. Verder ontwikkelden en 
testten we een algoritme dat ademstops detecteert. Hiervoor gebruikten 
we videoregistraties vanuit verschillende camerahoeken met gesimuleerde 
en aanvals-gerelateerde ademstops. De haalbaarheid van het detecteren 
van ademstops met het gemaakte algoritme was zichtbaar in de resultaten: 
ademstops werden altijd gedetecteerd vanuit minstens één camerahoek, en 
er waren weinig valse alarmen.

Concluderend draagt het werk in dit proefschrift bij aan de verbetering 
van de diagnose, behandeling en veiligheidsmonitoring van epilepsie door 
onderzoek naar automatische markers voor epilepsie. Ons onderzoek 
verschafte 1) nieuwe algoritmes om te verwijderen epileptogeen weefsel af te 
grenzen en contactloos vallen en ademstops te detecteren en 2) kennis over 
de werking en toegevoegde waarde van aanvalsdetectie-algoritmes.
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