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Chapter 1 - General introduction 

Detecting interictal epileptiform discharges (IEDs) and seizures is helpful in epilepsy 
diagnosis, classification and monitoring [1,2,3]. Prolonged recordings have been shown to 
enhance the chances of detecting both seizures and IEDs, thereby leading to higher 
diagnostic efficiency [4,5]. 

The Epilepsy Monitoring Unit (EMU) at Stichting Epilepsie Instellingen Nederland (SEIN) 
conducts prolonged video-EEGs. Technicians visually examine the entire EEG record to 
identify all relevant interictal and ictal events in order to address the referral question. 
Selected segments are then reviewed by a clinical neurophysiologist, who provides a final 
electroclinical diagnosis. This complete visual data analysis is time consuming and expensive 
because of the need for specialized personnel. The current shortage of staff, especially 
technicians, causes a high workload and may eventually result in scaling down the number of 
EEGs. It is therefore necessary to explore time-saving alternatives to review large EEG 
datasets without compromising quality.  

‘Sampled visual review’ is a time-saving technique that has received limited evaluation. In this 
approach, only specific segments of the extended EEG are visually analyzed. Research 
indicates that analyzing the first hour of sleep can predict the presence of IEDs for the entire 
recording with high accuracy [6]. Another study suggests that sampled reviews are equally 
effective in determining the final electroclinical diagnosis compared to the traditional method 
although some events, interictal or ictal, may be overlooked [7]. 

Another approach is automated EEG analysis, using IED (also referred to as ‘spike’) and 
seizure detection software. By detecting spikes and seizures automatically, it can provide 
reviewers with valuable information and alleviate the burden of visual analysis. The software 
can detect all possible interictal events and present them to the reviewer, which eliminates 
the need for a page-by-page inspection of the recording. Despite considerable research 
efforts and technological advancements in computer science since the 1970s, automated EEG 
analysis software for routine scalp EEG remains underutilized by clinicians due to issues with 
usability and lack of confidence [8, 9]. However, in recent years, there has been significant 
improvement in software performance and detection algorithms, as well as commercially 
available software packages have emerged. 

For an algorithm to be effectively employed in an EMU environment, it should incorporate 
both seizure detection and IED detection capabilities. Additionally, the algorithm should 
possess a user-friendly interface to facilitate its utilization by technicians and neurologists 
who typically lack a technical background. For these reasons, in this thesis, we only use 
commercial available detection software packages. 

Most commercially available software packages use neural networks. These are composed of 
basic computing units which learn and recognize patterns in ways that are at least 
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superficially similar to humans. Neural networks do not need specific rules for training, only 
examples. However, most neural networks methods use supervised learning in which each 
training signal input into the network is classified [8]. Examples include assessments of 
power, frequency, segmentation and evolution of rhythmic activity (seizure detection) or 
amplitude, sharpness, whether the event exceeds that of the background activity and field 
(IED detection) [10,11]. There are typically several layers between input and output [12]. 
Furthermore, non-cerebral activity can be  identified. This includes electrode artifact, muscle 
artifact, chewing artifact, and vertical and horizontal eye movement potentials [11].  

 
Objective  

The objective of this thesis is to investigate the potential of using automated spike and 
seizure detection in reviewing prolonged EEGs without compromising the quality of the 
electroclinical diagnosis. This research includes the potential to combine automated 
detection with sampled visual review (Figure 1) in order to obtain an impression of the 
background activity. This helps the reviewer properly assess the automated detections, and 
to detect potential aspecific (focal or diffuse) dysfunctions or rhythmic delta activity. Visually 
assessed samples consist of one hour during wakefulness, one hour during sleep, half an hour 
of wakefulness after wake-up and all clinical events marked by the patient or nurses. After 
the sampled visual review, the whole record is analyzed using automated spike and seizure 
detection. 

The quality of the diagnosis using sampled visual review in combination with automated spike 
and seizure detection must be at least equivalent to that achieved through complete visual 
review, without any loss of accuracy. In other words, the review method using automated 
detection software must perform at least as well as human experts in detecting IEDs and 
seizures. 



Chapter 1 

10 
 

 

Figure 1. Conventional (above) and proposed (below) EEG review methods of a 24h EEG 

 

Automated spike and seizure packages 

In this thesis we used three software packages: Persyst (Persyst Development Corporation, 
USA), Encevis (AIT Austrian Institute of Technology, Austria) and BESA (BESA Epilepsy, 
Germany). 

Persyst 

Persyst has three sensitivity settings for IED detection. In our research we used the default 
medium setting and the low setting, the setting with the highest specificity. The output is a 
list of timed IED detections per electrode [11]. Output for seizure detection is also a list of 
timed detection with corresponding seizure probability. Version P13 has no user-adjustable 
settings, whereas the latest version (P14) allows a user to adjust the threshold settings for 
seizure duration and for seizure probability [10]. 

Encevis 

EpiSpike, the IED detection module, has no sensitivity settings. The output is a list of timed 
IED detections per electrode. The output of the seizure detection module, Episcan, is a list of 
timed detections with corresponding elektrodes. Encevis is the only package that also uses 
the ECG channel for seizure detection [13]. 
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BESA epilepsy 

The BESA software uses a different method. Instead of showing detections as distinct events, 
it offers detections as clusters. These clusters are made for every two-hour epochs, using four 
different parameters focusing on waveform, topography, location and orientation [14]. At 
least four similar events are required for a cluster to be identified. The remaining detections 
are placed in a residual section. The software shows the 20 waveforms with the most 
similarity to the cluster mean to the user, together with the equivalent locations of the events 
in a head scheme. A human reviewer has to categorize the clusters as epileptiform or not. 

 
The performance of automated detection software is assessed based on two critical factors: 
sensitivity and specificity (false detection rate). The sensitivity must be high enough to detect 
all relevant interictal epileptiform discharges and seizures, and the false detection rate must 
be low enough to avoid requiring significant time to filter through false positives [15]. 

 

Aims and outline of the thesis 

The first chapter we compared the performance of a commercially available spike detection 
algorithm to that of human expert consensus when calculating the spike-wave index 
(Chapter 2).  

Chapter 3 proposes and studies a new review method using sampled visual review in 
combination with automated spike and seizure detection (Figure 1).  Visually assessed 
samples consist of one hour during wakefulness, one hour during sleep, half an hour of 
wakefulness after wake-up and all clinical events marked by the patient or nurses.  

Additionally, the thesis researches which of the three software packages performed best in 
our EMU setting, for spike detection (Chapter 4) as well as and seizure detection (Chapter 5). 
IEDs were marked by a consensus of three human experts and were compared with the 
detections of all three software packages. Seizures were extracted from the original clinical 
reports and were compared with the detections of all three software packages in 
combination with the live observations by nursing staff and patients push buttons. 

Finally, in the thesis we explored sentiments that can hinder successful implementation of 
the software (Chapter 6) and includes semi-structured interviews with clinical 
neurophysiology staff and outpatient clinic neurologists regarding their view on automated 
spike and seizure detection. The interviews identify multiple factors that may hinder or 
facilitate future implementation, referred to as ‘barriers’ and ‘facilitators’, respectively.  
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Chapter 2 - Determining the Spike–Wave Index using automated 
detection software 

 

Abstract 

Purpose: The spike–wave index (SWI) is a key feature in the diagnosis of electrical status 
epilepticus during slow-wave sleep. Estimating the SWI manually is time-consuming and is 
subject to interrater and intrarater variability. Use of automated detection software would 
save time. Thereby, this software will consistently detect a certain EEG phenomenon as 
epileptiform and is not influenced by human factors. To determine noninferiority in 
calculating the SWI, we compared the performance of a commercially available spike 
detection algorithm (P13 software, Persyst Development Corporation, San Diego, CA) with 
human expert consensus.  

Method: The authors identified all prolonged EEG recordings for the diagnosis or follow-up 
of electrical status epilepticus during slow-wave sleep carried out from January to December 
2018 at an epilepsy tertiary referral center. The SWI during the first 10 minutes of sleep was 
estimated by consensus of two human experts. This was compared with the SWI calculated 
by the automated spike detection algorithm using the three available sensitivity settings: 
“low,” “medium,” and “high.” In the software, these sensitivity settings are denoted as 
perception values.  

Results: Forty-eight EEG recordings from 44 individuals were analyzed. The SWIs estimated 
by human experts did not differ from the SWIs calculated by the automated spike detection 
algorithm in the “low” perception mode (P = 0.67). The SWIs calculated in the “medium” and 
“high” perception settings were, however, significantly higher than the human expert 
estimated SWIs (both P < 0.001).  

Conclusion: Automated spike detection (P13) is a useful tool in determining SWI, especially 
when using the “low” sensitivity setting. Using such automated detection tools may save 
time, especially when reviewing larger epochs.  
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Introduction 

A key feature in the diagnosis of electrical status epilepticus during slow-wave sleep (ESES) is 
the amount of epileptiform activity occurring during sleep, usually expressed as a “spike– 
wave index” (SWI) [1]. In 1971, ESES was originally described as an epileptic encephalopathy 
characterized by sleep-induced activation of epileptiform activity on the EEG [2]. In 1989, the 
International League Against Epilepsy (ILAE) defined the characteristic EEG pattern in ESES 
as continuous diffuse spike– waves during slow-wave sleep [3]. This condition mainly affects 
children and is associated with cognitive decline involving a wide spectrum of developmental 
and neurocognitive domains [4]. The underlying etiology can be structural or genetic [5]. The 
ILAE definition of ESES does not include a specific cut-off percentage regarding the amount 
of epileptiform activity in the EEG. A recent guideline, however, suggested a criterion of at 
least 50% epileptiform activity during sleep, especially if the clinical symptoms are compatible 
with an ESES-related syndrome [6]. The same guideline also mentions a cut-off of at least 85% 
epileptiform activity, mainly to facilitate comparison with existing literature. The methods 
used to determine the SWI varies, especially regarding the amount of sleep EEG which is 
analyzed (from 100 seconds to a whole sleep cycle) [6,7]. Automated spike detection 
algorithms have long been available [8]. They are useful in reviewing EEG recordings by 
detecting interictal epileptiform discharges, to quantify spike density, and possibly to 
distinguish different epileptiform morphologies [9]. Experts’ confidence in these systems 
are, however, low [10]. Future users need independent research with this software to gain 
confidence. An issue in validating such algorithms is the lack of a gold standard in EEG review, 
mainly because of large interrater and intrarater variability seen in identifying spikes or sharp 
waves in the same EEG recording [11]. Factors that play a role are, for example, reader style, 
fatigue, and loss of concentration. The lack of an objective gold standard creates difficulties 
in assessing whether a detection algorithm is performing well [12]. The Persyst 13 (P13) is one 
of the available software packages for EEG visualization that has an automated spike and 
seizure detection feature. The spike detection algorithm is a neural network that attempts to 
mimic the perception-based marking of human experts (HEs) [13,14]. For users, the precise 
details of the algorithm and the neural network rules are mostly unknown except for some 
technical aspects [14]. The algorithm uses different sensitivity settings to present the output; 
these are denoted as perception values, ranging from zero to one. Ambiguous epileptiform 
features are assigned nearzero values, and clear epileptiform abnormalities are assigned 
nearone values [13]. P13 has three different settings: “high,” “medium,” and “low.” The 
“high” setting has a perception threshold setting of 0.1, the “medium” of 0.4, and the “low” 
of 0.9. Counting spikes manually is a time-consuming task [15]. Estimating the SWI using 
automated detection software could save time, as a detection algorithm is able to calculate 
a SWI in few seconds (after the record is processed). This is independent of the size of the 
epoch. Thus, the time saved is larger when reviewing longer EEG recordings. Thereby, an 
automated detection algorithm will consistently detect a certain EEG phenomenon as 
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epileptiform and is not influenced by individual reader style or other reader factors such as 
fatigue. A recent report found that the software-calculated SWI using P13 was noninferior to 
experts’ estimates [16]. This report, however, was based on a small number of 
nonheterogeneous recordings from ESES patients. Thereby, the “high” perception setting 
was used instead of the “medium” setting, which the Persyst Development Corporation 
states is the default mode. Furthermore, this report did not provide information about 
accurate quantification of lower SWIs, which can be useful for follow-up of patients. The 
algorithm, therefore, needs further validation. In this study, we compared the performance 
of the P13 algorithm versus HE consensus in a heterogeneous set of recordings, reviewing all 
three perception value settings (‘high’, ’medium’  or ‘low’).  

 

Method 

All prolonged EEG recordings made with an ESES or follow-up of ESES referral question in 
children or teenagers (age 0–18 years) between January 1, 2018 and December 31, 2018 were 
included. Informed consent was not obtained because of the study’s retrospective nature. 
Thereby, only anonymized data, and no video data, were used. This study was approved by 
the institutional review board. The HEs were a clinical neurophysiologist and a physician 
assistant each with more than five years of experience in reviewing EEGs. The education of 
this particular physician assistant contained multiple years of medical training combined with 
dedicated EEG training, supervised by board-certified clinical neurophysiologists. The HEs 
were masked to the initial video-EEG monitoring report. The two HEs reviewed the EEGs 
together and only viewed the first 10 minutes of NREM sleep (starting point at 50% decrease 
of posterior dominant rhythm, appearance of lateral eye movements or drowsiness, and/or 
vertex waves). They estimated a SWI for each recording defined as the average percentage 
of each 1-second epoch containing the sharp component of an epileptiform discharge. 
Interictal epileptiform discharges were defined as paroxysmal, sharply contoured, wave 
forms, clearly distinguished from the background activity, had a field, and a duration of less 
than 200 milliseconds [17]. In the SWI estimation, both generalized and focal discharges were 
included. Both experts had to agree on the presence of the interictal epileptiform discharge 
for it to be counted. The SWI was estimated without explicit time constraints, and the EEG 
traces could be reformatted as in the clinical setting. All EEGs were reviewed with the 
SystemPLUS Evolution software (Micromed, Veneto, Italy) using standard 10 to 20 
International electrode recording and 256 Hz sample frequency. The time of the manual count 
by the HEs was measured for each EEG record. For the automated spike detection, we used 
the P13 software (Persyst Development Corporation, San Diego, CA). The SWI was calculated 
using all three different perception settings. An SWI calculated by the detection software was 
also defined as the average percentage of each 1-second epoch that contained an 
epileptiform discharge. Continuous variables were analyzed using the Wilcoxon signed rank 
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test for nonparametric data using SPSS (IBM SPSS Statistics for Windows, Version 23.0. 
Armonk, NY). 

 

Results  

A total of 48 recordings from 44 patients (24 male) were identified. The mean patient age 
was 7.8 years (SD 2.4 years; range, 3–11 years). Human experts estimated an SWI in a median 
time of 4 minutes 54 seconds (range, 30 seconds–14 minutes 37 seconds) per record. 
According to the HEs, 28 recordings included spikes. The SWIs estimated by the HEs did not 
significantly differ from the SWI calculations of the algorithm in the ‘low’ perception settings 
(Tables 1 and 2). 

 

Table 1. Median SWI (in %) of all recordings (N=48) 

 Median    
SWI in % 

Range (%) Percentile difference  
from HE (p-value) min max Q1 Q3 

HE consensus 18 0 99 0 80  

P13 (low1) 16 0 96 1 78 p=0.67 

P13 (median1) 28 1 98 6 82 p=0.000 

P13 (high1) 36 3 99 36 83 p=0.000 
1 sensitivity setting, HE = human experts, P13 = Persyst 13 spike detection 
 

Table 2. Median SWI (in %) of recordings containing spikes (N=28) 

 Median    
SWI in % 

Range (%) Percentile difference  
from HE (p-value) min max Q1 Q3 

HE consensus 76 1 99 52 92  

P13 (low1) 75 2 96 51 88 p=0.19 

P13 (median1) 79 6 98 61 93 p=0.001 

P13 (high1) 79 11 99 64 94 p=0.000 
1 sensitivity setting, HE = human experts, P13 = Persyst 13 spike detection 
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The SWI estimated by the HEs differed significantly from the ‘medium’ perception settings 
and the ‘high’ perception settings. The SWIs calculated in these modes were higher than the 
HE-estimated SWIs. The largest difference in calculated SWI within one subject in the ‘low’ 
perception setting was 10% (the P13 algorithm calculated 51% vs. 61% for the HEs). The largest 
difference in calculated SWIs within an individual between the P13 algorithm in the ‘medium’ 
setting was 18% and in the ‘high’ perception setting was 29%. The differences between SWIs 
calculated by HEs and the three perception settings were, in most cases, smaller for the 
higher SWIs (especially above 70%) than in the lower SWIs. This is shown in Figure 1.  

 

 

HE = human experts; P13 = Persyst 13 spike detection; SWI = spike–wave index. 

Figure 1. SWI Calculated by HEs and P13.  
 

Based on the SWIs estimated by the HEs, 22 recordings met the ESES criteria of ≥ 50% of 1-
second epochs containing spikes (Table 3). All were also identified with an SWI ≥ 50% by the 
P13 algorithm using the ‘low’ setting: thus, sensitivity was 100% (confidence interval, 82%–
100%) and specificity was also 100% (confidence interval, 52%–100%). In one recording, the 
algorithm in ‘medium’ and ‘high’ settings calculated a SWI ≥ 50%, where the HEs calculated a 
SWI < 50%: thus, in ‘medium’ and ‘high’ perceptions settings, the sensitivity is 100% 
(confidence interval, 82%–100%) and the specificity is 83% (confidence interval, 36%–99%). No 
spikes were seen by HEs in 20 recordings. The algorithm, however, detected spikes in most 
of these recordings. It calculated SWIs ranging from 0% to 6% in the ‘low’ setting, from 1% to 
20% in the ‘medium’ setting, and from 3% to 33% in the ‘high’ setting.  



2

Determining the spike-wave index 

21 
 

Table 3. Number of records meeting ESES-criteria, calculated by HEs and by P13 

 
P13 (low1) P13 (medium and high1) 

P13 ≥ 50% P13 < 50% P13 ≥ 50% P13 < 50% 

HE >=50% 22 0 22 0 

HE >0% and <50% 0 6 1 5 
1 sensitivity setting, HE = human experts, P13 = Persyst 13 spike detection 

 

Discussion 

We showed that calculating SWI using the spike detection algorithm P13 in the ‘low’ 
perception setting is non-inferior to estimating SWI by HEs. The perception setting matters 
especially in the lower SWIs because the differences between the settings are small in the 
higher SWIs. We also showed that using the spike detection software may save HEs time in 
comparison with human estimation. Thereby, the software makes it easy to estimate SWI for 
larger epochs, such as a first sleep cycle or even a whole night. Another advantage is that the 
algorithm will always detect the same event as epileptiform and thus eliminate human factors 
such as reader style or fatigue. There are limitations to our study. We tried to generate a 
heterogeneous dataset with SWIs in all ranges. There were, however, few recordings with an 
SWI around the cut-off point of 50%. At group level, the SWI estimated by HEs and the P13 in 
‘low’ perception setting did not differ, but we did see some individual differences between 
the calculated SWIs. In practice, this can mean the difference in reaching or not reaching the 
criterion of at least 50% epileptiform activity. However, in ESES-related syndromes, the SWI is 
only part of the diagnostic criteria, as the clinical symptoms are also taken into account. 
Thereby, the SWI criterion of 50% is arbitrary. Another issue when testing the reliability of a 
spike detection algorithm is that the interrater agreement between EEG reviewers is low, so 
our HE estimated SWI is not the gold standard. We approached this by estimating the SWI in 
consensus, instead of using a single individual to estimate SWIs (which is current practice in 
our center). A disadvantage of using this algorithm is that it has false detections, usually sharp 
physiologic sleep phenomena, especially K-complexes. This was especially noticeable in 
(near-) normal EEG recordings. The P13 calculated SWI of these normal EEGs is up to 6% in 
‘low’ perception settings and up to 33% in ‘high’ perception settings and reviewers must 
always be aware of this especially when reviewing EEGs of children, who often have sharp 
sleep phenomena. Spike detection software is an useful tool in obtaining SWI and can help 
reducing the burden of manual estimation. Further validation of the software is needed in 
larger cohorts, multiple centers, and by multiple HEs.   
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Chapter 3 - Using sampled visual EEG review in combination with 
automated detection software at the EMU 

 

Abstract 

Purpose: Complete visual review of prolonged video-EEG recordings at an EMU (Epilepsy 
Monitoring Unit) is time consuming and can cause problems in times of paucity of educated 
personnel. In this study we aimed to show non inferiority for electroclinical diagnosis using 
sampled review in combination with EEG analysis software (P13 software, Persyst 
Corporation), in comparison to complete visual review. 

Method: Fifty prolonged video-EEG recordings in adults were prospectively evaluated using 
sampled visual EEG review in combination with automated detection software of the 
complete EEG record. Visually assessed samples consisted of one hour during wakefulness, 
one hour during sleep, half an hour of wakefulness after wake-up and all clinical events 
marked by the individual and/or nurses. The final electro-clinical diagnosis of this new review 
approach was compared with the electro-clinical diagnosis after complete visual review as 
presently used. 

Results: The electro-clinical diagnosis based on sampled visual review combined with 
automated detection software did not differ from the diagnosis based on complete visual 
review. Furthermore, the detection software was able to detect all records containing 
epileptiform abnormalities and epileptic seizures. 

Conclusion: Sampled visual review in combination with automated detection using Persyst 13 
is non-inferior to complete visual review for electroclinical diagnosis of prolonged video-EEG 
at an EMU setting, which makes this approach promising.  
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Introduction 

EEG is an important tool in the management of epilepsy. Interictal and ictal findings can help 
in epilepsy diagnosis, seizure and syndrome classification, epilepsy monitoring and for 
identifying surgical candidates [1,2]. 

At an Epilepsy Monitoring Unit (EMU) prolonged video-EEGs are performed, resulting in large 
datasets. At our centre, technicians visually review the entire EEG recording, aiming at finding 
all relevant interictal and ictal events for answering the referral question. Subsequently, a 
clinical neurophysiologist reviews selections made by the technician and provides a final 
electro-clinical diagnosis. The complete visual data analysis is time-consuming and costly. In 
times where there is a paucity of technicians, this can cause problems. It is necessary to look 
for time saving alternatives to review large EEG datasets, without loss of quality. 

One approach for saving time is sampled visual review. This approach has hardly been 
evaluated. One study suggested that the first hour of sleep reliably predicts the occurrence 
of interictal epileptiform activity for whole recording [3]. Another study showed that sampled 
review was non-inferior regarding final electro-clinical diagnosis, although a substantial 
number of events was missed [4].  

Another approach is automated EEG analysis, using detection software. These software 
packages are widely used in ICU settings, but to our knowledge not commonly used at EMUs. 
There are several reports on automated detection algorithms, although most focus on the 
algorithm development rather than clinical validation [5]. The Persyst 13 (P13) spike detector 
is a commercially available software frequently used in the assessment of automated 
detection software [6,7,8,9]. Two studies showed P13 was non-inferior to human mark-up 
when detecting interictal epileptiform abnormalities [6,7]. Two other studies looked at ictal 
events. The first study found P13 only correctly identified at least one electrographic seizure 
in 53% of ambulatory recordings [8]. The second showed a previous Persyst version (version 
11) detected 76% of electrographic seizure at an EMU setting, but missed most of the 
myoclonic and focal aware seizures [9].   

Our main objective is to determine whether a review approach using a combination of 
sampled visual review and automated detection software is non-inferior to the conventional 
method, where the entire EEG is visually reviewed.  

 

Method 

Fifty prolonged video-EEG recordings between November 2018 and May 2019 were 
prospectively included. The only inclusion criterion was a minimum age of 16 years. We 
excluded presurgical recordings. The analyses of these records were embedded in our usual 
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clinical workflow, so informed consent was not obtained in accordance to local Ethics 
guideline.  

All recordings were performed at our 8-bedded EMU [10]. A Micromed EEG system 
(Micromed, Mogliano Veneto, Italy) using the standard 10-20 International electrode 
placement plus F9/F10 and 256 Hz sample frequency was used. During daytime and early 
evening, individuals were observed by three nurses, positioned at a nearby video footage 
observation station; at night, two nurses carried out the task [10, 11]. During the recording 
individuals were asked to press the button when experiencing a clinical event.  

 

Sampled EEG 

The sampled EEG contained the first hour of recording during wakefulness including 
hyperventilation provocation and intermittent photic stimulation, the first hour of sleep and 
the first half hour after sleep the next morning, which was added due to the circadian 
distribution of some generalized epilepsies (especially JME). In addition, EEG and video 
periods around nurse or patient ‘push button’ marked events were reviewed.  

 

Automated detection software 

The P13 software from Persyst Corporation (P13) was used for the automated spike and 
seizure detection. Spike detections are clustered per electrode, where maximum amplitude 
was recorded. It generates 1-second epochs centred around the detected spike, with an 
average signal per electrode. All single potentially abnormal findings can also be reviewed. 
Further details can be found in previous literature [12, 13]. Regarding seizure detection, the 
manual states that the algorithm detects ictal patterns with a minimum duration of 11 
seconds. The Persyst software also includes various options for quantitative EEG trends.  

 

Research protocol 

The human experts (HEs) were pairs, in varying combinations, of two clinical 
neurophysiologists and a physician assistant, all with more than five years of video-EEG 
reviewing experience. To reduce steep learning effects, the HEs had already practiced using 
the P13 software before the first review for the study. 

The reviewing process consisted of three steps (Figure 1). As in our normal routine, EEGs were 
pre-reviewed by EEG technicians. They first made a report of the sampled EEG in step 1, 
subsequently they reviewed the whole EEG record, and documented additional findings for 
step 3. For step 1 as well as step 3, video is only reviewed in the period that (1) nurses note a 
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(possible) event, (2) patients use the push button, (3) technicians see a (possible) ictal EEG 
rhythm and (4) to distinguish an artefact from cerebral activity.  

Technicians were blinded for the results of step 2 during the whole reviewing process. The 
HEs first reviewed the sampled EEG in step 1, afterwards reviewed the whole EEG using 
automated software (step 2), and finally reviewed technicians additional findings in step 3. 
As with the technicians, the video is only reviewed by the HE’s in the above-mentioned 
periods. After each step the HEs formed an electro-clinical diagnosis, using SCORE 
terminology [14]. Possible epilepsy was used when only a few, or only ambiguous, interictal 
epileptiform discharges (IEDs) were seen. Probable epilepsy was used when definite interictal 
epileptiform activity was seen. Definite epilepsy was used when a record contained one or 
multiple seizures with electro-encephalographic correlate. The electro-clinical diagnosis in 
step 3 was regarded as the current best available gold standard. Furthermore, HEs described 
the ictal and interictal findings at each step.  

 

Outcome measures 

The primary outcome measure was the difference between the electro-clinical diagnoses in 
sampled visual review with automated detection (step 2) and the electro-clinical diagnoses in 
complete visual review (step 3). Secondary outcome measures were the electro-clinical 
diagnosis for sampled visual review only (step 1), compared to step 3. Furthermore we looked 
at the occurrence of IEDs, missed seizures by P13 in step 2, false seizure detections by P13 in 
step 2 and missed seizures by technicians in step 3. 
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HE = human expert; HV = hyperventilation provocation; IPS = intermittent photic stimulation, P13 = Persyst 13. 

Figure 1. Research protocol 

 

Results 

A total of 1170 hours of video-EEG from 50 records (18 males and 32 females with median age 
32 (range 18 – 73) years) was analysed with a median duration of 23.4 hours (range 17.5 – 44.5 
hours). The clinical referral question for the EEGs was presence of interictal epileptiform 
findings (to support diagnosis or follow-up) in 32 records, classification of epilepsy in 10 
records, and event recording in 8 recordings for diagnostic or classification purposes.   
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Electro-clinical diagnoses 

Table 1 shows the various reported electro-clinical diagnoses in each step. In none of the cases 
the electro-clinical diagnosis in step 2 differed from the electro-clinical diagnosis in step 3.  

The electro-clinical diagnosis reported in step 1 differed from step 2 in three cases (6%). In one 
patient the report changed from aspecific focal dysfunction to probable focal epilepsy, the 
second changed from normal to possible focal epilepsy, and the third changed from possible 
to definite focal epilepsy, because a seizure was detected by P13 outside the sampled EEG.  

 

Interictal epileptiform abnormalities 

Interictal epileptiform abnormalities were present in 29 records (58%) according to the HEs 
(step 3). P13 detected all records containing epileptiform activity. One record also contained 
TIRDA (Temporal Intermittent Rhythmic Delta Activity), which was not detected by the P13 
software and also not seen in step 1. No other important interictal findings were missed by 
P13. There was no difference in localization and frequency of interictal (epileptiform) activity 
between step 2 and step 3.  

 

Seizures 

In 16 records (32%) at least one clinical event occurred (range 1 – 58). In 6 of these records the 
events were classified as epileptic seizures (5 with focal seizures and 1 with generalized 
seizures; Table 2). In 5 of these 16 records the events were classified as PNES and in the 
remaining 5 records as subjective events with uncertain etiology.  

P13 alone, detected all records containing seizures. Although in 3 records a part of the 
seizures were missed. In the record containing 58 absences, P13 missed five of them. Of those 
five, three absences were shorter than 11 seconds and two were longer than 11 seconds. The 
other two records contained nocturnal frontal seizures with no or subtle EEG changes (only 
muscle and movement artefacts).  

In 27 records (54%) false seizure detections by P13 occurred, with a total of 81 false detections 
with a median of two per record (range 1 – 19). Most of these false detections occurred during 
chewing or rhythmic eye blinking and were easily recognised. 

One focal seizure with impaired awareness was missed by the technician in step 3. This seizure 
was detected by P13 in step 2. 
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Table 1. Diagnostic significance 

 Step 1 Step 2 Step 3 

Normal 9 8* 8 

No definite abnormality 6 6 6 

Focal dysfunction 5 4* 4 

Diffuse dysfunction 0 0 0 

Focal 
epilepsy 

Possible 1 1* 1 

Probable 10 11* 11 

Definite 4 5* 5 

Multifocal  
epilepsy 

Possible 2 2 2 

Probable 1 1 1 

Definite 0 0 0 

Generalized 
epilepsy 

Possible 0 0 0 

Probable 5 5 5 

Definite 1 1 1 

Epilepsy no classification 1 1 1 

PNES 5 5 5 

Non epileptic otherwise 0 0 0 
Normal = Normal interictal EEG and no events recorded, PNES = psychogenic non epileptic seizures, *= in one 
record the electro-clinical diagnosis changed 
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Table 2. Detected seizures from the 6 records containing definite epileptic events 

    Step 1  Step 2 Step 3 

 
Case 

Total 
number  
seizures 

Seizure 
type 

Number 
occurred in 

sampled 
EEG part 

Number 
detected 

by PB 

Number 
detected 
by nurse 

Number 
detected 

by P13 

Number 
detected 
only by 

technician 

1 58 Absence 13 5 16* 53 1 

2 14 FAS 0 1 12 6 1 

3 1 FIAS 0 0 1 1 0 

4 1 FIAS 0 0 1 1 0 

5 5 FAS 2 1 4 1 0 

6 1 FIAS 0 0 0 1 0 
Part 1 = first hour wakefulness, first hour sleep and first half hour after sleep (in morning),  
PB = push button, FAS = focal aware seizure, FIAS = focal seizure with impaired awareness 
* common practice for the nurse is to stop responding to absences after > 10 seizures. 
 

Discussion 

In this study we showed that the electro-clinical diagnosis after sampled visual EEG review in 
combination with automated detection software (P13) did not change after successive 
complete visual review. The advantage of this reviewing approach is that it may substantially 
save overall reviewing time, especially in our setting with many prolonged EEG recordings.  

We also showed that our approach of sampled visual review alone is insufficient, both with 
respect to interictal findings as for missing seizures. 

Relying on automated detection software alone is also not possible. First, sampled visual 
review remains necessary to get an impression of the background activity and potential (focal 
or diffuse) dysfunctions or rhythmic delta activity (e.g. TIRDA). We showed that reviewing an 
hour when awake, an hour when asleep and an hour after wakefulness is enough for this 
purpose. Second, automated software packages are likely to miss seizures with no or just 
subtle EEG correlate. This makes the software less suitable for diagnosis or monitoring very 
short seizures (i.g. myoclonia) and focal aware seizures, which was also shown by previous 
literature [9]. Therefor additional observations of nurses and markings of patients 
experiencing clinical events will stay required.  

The aim of the study was to show non-inferiority to the human observer. An interesting 
observation is the seizure missed by the technician, but detected by the P13 software, 
showing the potential superiority of software above the human observer. This is probably not 
exceptional, where technicians are requested to review prolonged records at a much faster 
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speed than real-time risking missing relevant events [15]. Studies should be designed not only 
to show non-inferiority of detection software, but also to enable the software to “beat” the 
human observer as gold standard. 

Our proposed approach can be used for review of prolonged records at the EMU, since we 
showed non-inferiority. And although we did not investigated it formally, this approach is 
very likely to result in time gain, provided that the elaboration of the detection software 
results does not require extra time. A disadvantage of the P13 is that it has false detections, 
interictal as well as ictal. Reviewers must be able to filter these out. It would be very helpful 
if all detected findings are merged in clusters based on similar properties like morphology and 
localization, that reliably reflect the same functional EEG abnormality. Then groups of 
artefacts or nonspecific abnormalities could be disregarded, without the need to check all 
the individual detections. In the P13 software this is currently not possible. 

Our study has some limitations. We tried to include a heterogenic group with focal epilepsies, 
generalized epilepsies and PNES but our sample size was too small to include all different 
types of epilepsies and seizures. In the 3-step-process the HEs were not blinded to their 
previous reports. Although this is suboptimal, it prevents the known problems of interrater 
disagreement [16]. Finally this single centre bias also limits overall generalizability, as 
monitoring methods, staff expertise, and training vary widely among epilepsy centres. What 
may be a good set-up in our centre may not be useful or feasible for others. This especially 
applies for settings with no or minimal nurse observation, such as ambulatory settings.  

Further validation of the software is warranted in larger cohorts, multiple centres and by 
multiple human experts. A progressive approach would be a design combining further 
validation during implementing of supporting automated software, stepwise reducing the 
required EEG review time. We think it’s feasible to make a step toward using more medical 
technology in EEG reviewing. 

Sampled visual review in combination with automated detection software is a promising time 
gaining tool in reviewing prolonged video-EEGs of adults at the EMU. It thereby remains 
warranted that clinical events are continuously observed by trained nurses and patients have 
the possibility to use a push button when experiencing seizure-like symptoms. 

  



3

Sampled visual review in combination with automated detection 

 

35 
 

References 

1. Wirrell ED. Prognostic significance of interictal epileptiform discharges in newly 
diagnosed seizure disorders. J Clin Neurophysiol. 2010;27:239-48. 
https://doi.org/10.1097/WNP.0b013e3181ea4288. 

2. Shin HW,  Pennell PB, Lee JW, et al. Efficacy of safety signals in the epilepsy monitoring 
unit (EMU): Should we worry? Epilepsy & Behavior. 2012;23:458–61. 
https://doi.org/10.1016/j.yebeh.2012.01.018. 

3. Liu X, Issab NP, Roseb S, et al. The first-hour-of-the-day sleep EEG reliably identifies 
interictal epileptiform discharges during long-term video-EEG monitoring. Seizure. 
2018;63: 48-51. https://doi.org/10.1016/j.seizure.2018.10.015. 

4. Badawy RAB, Pillay N, Jetté N, Wiebe S, Federico P. A blinded comparison of continuous 
versus sampled review of video-EEG monitoring data. Clin Neurophysiol. 2011;122:1086-
90. https://doi.org/10.1016/j.clinph.2010.10.048. 

5. Halford JJ. Computerized epileptiform transient detection in the scalp 
electroencephalogram: Obstacles to progress and the example of computerized ECG 
interpretation. Clin Neurophysiol. 2009;120:1909-15. 
https://doi.org/10.1016/j.clinph.2009.08.007. 

6. Scheuer ML, Bagic A, Wilson SB. Spike detection: Inter-reader agreement and a 
statistical Turing test on a large data set. Clin Neurophysiol. 2016;128:243-50. 
https://doi.org/10.1016/j.clinph.2016.11.005. 

7. Halford JJ, Westover MB, LaRoche SM, et al. Interictal epileptiform discharge detection 
in EEG in different practice settings. J Clin Neurophysiol. 2018;35:375–80. 
https://doi.org/10.1097/WNP.0000000000000492. 

8. González Otárula KA, Milhaeil-Demo Y, et al. Automated seizure detection accuracy for 
ambulatory EEG recordings. Neurology. 2019;92,e1-7. 
https://doi.org/10.1212/WNL.0000000000007237. 

9. Kamitakia BK, Yumb A, Leea J, et al. Yield of conventional and automated seizure 
detection methods in the epilepsy monitoring unit. 2019. Seizure. 2019;69:290-5. 
https://doi.org/10.1016/j.seizure.2019.05.019. 

10. Cox FME, Reus EEM, Widman G, Zwemmer JNP, Visser GH. Epilepsy Monitoring Units 
can be safe places; a prospective study in a large cohort. Epilepsy Behav. 2020;120:102-6. 
https://doi.org/10.1016/j.yebeh.2019.106718 

11. Rommens N, Geertsema E, Jansen Holleboom L, et al. Improving staff response to 
seizures on the epilepsy monitoring unit with online EEG seizure detection algorithms. 
Epilepsy Behav. 2018;84:99–104. https://doi.org/10.1016/j.yebeh.2018.04.026. 



Chapter 3 

36 
 

12. Wilson SB, Turner CA, Emerson RG, et al. Spike detection II: automatic, perception-
based detection and clustering. Clinical Neurophysiology. 1999;110:404-11. 
https://doi.org/10.1016/S1388-2457(98)00023-6. 

13. Reus EEM, Visser GH, Cox FME. Determining the Spike–Wave Index Using Automated 
Detection Software. Clin Neurophysiol. 2019; in press. 
https://doi.org/10.1097/WNP.0000000000000672 

14. Beniczky S, Aurlien H, Brøgger, JC, et al. Standardized computer-based organized 
reporting of EEG: SCORE - Second version. Clin Neurophysiol. 2017;128:2334–46. 
http://dx.doi.org/10.1016/j.clinph.2017.07.418. 

15. Halford JJ, Shiau D, Kern RT, et al. Seizure detection software used to complement the 
visual screening process for long-Term EEG monitoring. Am J Electroneurodiagnostic 
Technol. 2010;50:133–47.  

16. Bagheri E, Dauwels J, Dean BC, et al. Interictal epileptiform discharge characteristics 
underlying expert interrater agreement. Clin Neurophysiol. 2017;128:1994–2005. 
http://dx.doi.org/10.1016/j.clinph.2017.06.252.  



3



 

 

 

 

 

 



 

 

 

CHAPTER 4 

 

Automated spike detection: 

which software package? 

 

 

 

E.E.M. Reus 
F.M.E. Cox  
J.G. van Dijk  
G.H. Visser 
 

 

 

Seizure 2022;95: 33–7.  
https://doi.org/10.1016/j.seizure.2021.12.012



Chapter 4 

40 
 

Chapter 4 – Automated spike detection: which software package? 

 

Abstract 

Purpose: We assessed three commercial automated spike detection software packages 
(Persyst, Encevis and BESA) to see which had the best performance. 

Method: Thirty prolonged EEG records from people aged at least 16 years were collected and 
30-minute representative epochs were selected. Interictal epileptiform discharges (IEDs) 
were marked by three human experts and by all three software packages. For each 30-
minutes selection and for each 10-second epoch we measured whether or not IEDs had 
occurred. We defined the gold standard as the combined detections of the experts. Kappa 
scores, sensitivity and specificity were estimated for each software package.  

Results: Sensitivity for Persyst in the default setting was 95% for 30-minute selections and 82%  
for 10-second epochs. Sensitivity for Encevis was 86% (30-minute selections) and 61% (10-
second epochs). The specificity for both packages was 88% for 30-minute selections and 96%-
99% for the 10-second epochs. Interrater agreement between Persyst and Encevis and the 
experts was similar than between experts (0.67-0.83 versus 0.63-0.67).  
Sensitivity for BESA was 40% and specificity 100%. Interrater agreement (0.25) was low. 

Conclusion: IED detection by the Persyst automated software is better than the Encevis and 
BESA packages, and similar to human review, when reviewing 30-minute selections and 10-
second epochs. This findings may help prospective users choose a software package. 
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Introduction 

Detecting interictal epileptiform discharges (IEDs) is helpful in epilepsy diagnosis [1,2]. 
Prolonged EEG recordings improve the chances of finding interictal activity, yielding higher 
diagnostic efficiency, but also needing more review time [3,4]. The typical procedure for 
reviewing a prolonged EEG record involves human scrutiny of the complete record, which is 
time-consuming. 

Automated detection software might decrease review time while ensuring a high yield, but 
expert confidence in using such software is low [5]. This may partly be due to presumed high 
false-positive and false-negative rates, resulting from variable IED morphology and similarity 
to normal EEG activity or artefacts [5,6]. Automated detection software may serve as a 
screening tool to reduce the need for comprehensive visual review, provided it is sufficiently 
reliable.  

In a pilot study using only the Persyst software, we showed that the diagnostic yield was 
sufficient to be used as a substitute for a complete visual review of prolonged recordings [7]. 
The present study compares three different commercial software packages on a different 
heterogeneous dataset containing IEDs. 

 

Method 

EEG data 

Two human experts not participating in the marking process retrospectively screened 
recordings from 108 people, made at our EMU (Epilepsy Monitoring Unit) between August 
and September 2019); 43 were from people younger than 16 years and therefore excluded. A 
study set of 30 records was created from the remaining 65 records using an online 
randomization tool [8]. A 30-minute section of the EEG during wakefulness, deemed 
representative of the entire wake EEG, was selected for analysis.  

EEG data were recorded using the Micromed EEG system (Micromed, Mogliano Veneto, Italy), 
using the standard 10-20 international electrode recording and additional F9/F10 positions 
sampled at 256 Hz. The local medical ethics committee approved this study. As we recorded 
the EEGs exclusively in clinical care, the need for informed consent was waived according to 
Dutch rules. 

 

Human detections 

Three human experts independently marked all IEDs in the EEGs. Two were clinical 
neurophysiologists and one was a physician assistant. All had more than five years' EEG 
reviewing experience at a dedicated epilepsy center. The experts had no prior knowledge of 
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nor access to the clinical information or the EEG report. Each expert reviewed all thirty 30-
minute selections using the Micromed software; they could use all available montages. To 
identify IEDs, the criteria of the International Federation of Clinical Neurophysiology were 
used [9]. The experts were instructed to annotate the most negative point of each IED and 
to classify them as possible or definite IED (Figure 1). 

 

On the left side is a possible IED. On the middle and right side are definite IEDs. IEDs are shown in an average 
reference montage, but reviewers could use any montage. IED = Interictal Epileptiform Discharge 

Figure 1. Examples of IEDs  
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Automated IED detection 

We used three software packages: Persyst (Persyst Development Corporation, USA), Encevis 
(AIT Austrian Institute of Technology, Austria) and BESA (BESA Epilepsy, Germany).  

 

 Persyst 

Persyst version 14 has three sensitivity settings for IED detection. We used the default 
medium setting and the low setting. The low setting emerged as optimal in previous research 
[7,10,11]. The output is a list of timed IED detections per electrode.  

 

 Encevis  

We used the Epispike module in the Encevis software, version 1.9.2. There are no sensitivity 
settings. The output is a list of timed IED detections per electrode [12].  

 

BESA Epilepsy 

The BESA software (version 2.0) uses a different method. Instead of showing detections as 
distinct events, it offer the detections as clusters. These clusters are made for every two-hour 
epochs using four different parameters focusing on waveform, topography, location and 
orientation [13]. At least four similar events are required for a cluster to be identified. The 
remaining detections are placed in a residual section. The software shows the 20 waveforms 
with the most similarity to the cluster mean, together with the equivalent locations of the 
events in a head scheme. A human reviewer has to categorize the clusters as epileptiform or 
not.  

For this research, we used a 30-minute selection.  For the software to make proper clusters, 
45-minute epochs before and after the 30-minute selection were also reviewed by the BESA 
software. BESA Epilepsy also has no sensitivity settings. 

 

 Minimal requirements hardware and process time 

Persyst and Encevis have similar minimal requirements: i5 processor (1.6 GHz) or better and a 
memory of 4 GB RAM or better. Both packages review spikes and seizures together and 
require one minute of processing time for every six minutes of EEG, so each 30-minute 
selection takes around five minutes to process. In our experience, EEGs with many detections 
need more review time. The Persyst software can review four EEGs at the same time without 
losing processing speed. BESA Epilepsy review seizures and spikes separately. Spike 
detection also needs around one minute for every six minutes of EEG. Minimal requirements 
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are different: 1 GHz processor, 1 GB RAM and a graphics card OpenGL 1.1 with at least 16 MB 
RAM. 

 

Analysis 

Whether or not IEDs had occurred was assessed per 30-minute selection and per 10-second 
epoch. A 10-second duration was used because electroencephalographers usually detect IEDs 
by visual inspection of an 'EEG page' of 10 or 15 seconds [5]. Interrater agreement between 
the three human experts was calculated using Fleiss’ kappa scores. 

A gold standard was created using the ‘expert scores’ of the three experts: an EEG period 
(either a 30-minute selection or a 10-second epoch), was considered 'definitely epileptiform' 
if at least two of the three experts had marked it as containing at least one definite IED. A 
selection or epoch was considered 'possibly epileptiform' if only one expert had marked it as 
containing one or more definite IEDs, or if at least two experts had marked it as containing at 
least one possible IED. A selection or epoch was considered 'not epileptiform' when none of 
the experts had detected definite IEDs, and a maximum of one expert had marked at least 
one possible IED. 

Sensitivity and specificity for all three software packages were estimated for the complete 
30-minute selection and all separate 10-second epochs. Interrater agreement was also 
estimated between the gold standard and the software packages. Additionally sensitivity, 
specificity and interrater agreement were estimated between the gold standard and the 
original clinical report. This was only possible for the 30-minute selections.  

We want to use the detection software as a screening tool, so possible epileptiform 
selections and epochs were considered as epileptiform when calculating sensitivity, 
specificity and interrater agreement. All kappa scores were estimated using SPSS (IBM SPSS 
Statistics for Windows, Version 26.0.). 

 

Results 

 Database characteristics 

The study set consisted of  records from 13 men and 17 women. The median age was 39 years 
(range 18 – 76 years).  

According to the clinical reports, 20 EEGs contained IEDs (Table 1), of which six were 
generalized, and 14 were focal. Ten of these were temporal (unilateral or bilateral) and four 
were extratemporal.   
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Performance 
 

Table 1.  Presence of definite or possible IEDs per human expert  

30-minute selection HE 1 HE 2 HE 3 
‘expert 
scores’ 

Clinical 
report 

     # definite IEDs 19 18 21 20 20 

     # possible IEDs 3 3 2 2 0 
     # no IEDs 8 9 7 8 10 

10-second epoch HE 1 HE 2 HE 3 
‘expert 
scores’ 

 

     # definite IEDs 392 318 453 419  

     # possible IEDs 190 113 297 194  
     # no IEDs 4818 4969 4650 4787  

# = number containing, IEDs = interictal epileptiform discharges, HE = human expert. 

  

30-minute selection  

The kappa between the human experts was 0.69 (CI 0.53 – 0.86; Table 1). Sensitivity, 
specificity and kappa between the gold standard and software results are shown in Table 2.  

 

Table 2. IED detections per 30-minute selection 

 HE + HE ± HE - Sensitivity* Specificity* Kappa* 

Persyst + (M) 19 2 1 95% 
(CI 75-100%) 

88% 
(CI 47-99%) 

0.83 
(CI 0.60-1.00) Persyst – (M) 1 0 7 

Persyst + (L) 17 1 0 82% 
(CI 59-94%) 

100% 
(CI 60-100%) 

0.71 
(CI 0.45-0.96) Persyst – (L) 3 1 8 

Encevis + 17 2 1 86% 
(CI 64-96%) 

88% 
(CI 47-99%) 

0.68 
(CI 0.40-0.97) Encevis - 3 0 7 

BESA + 8 0 0 36% 
(CI 18-59%) 

100% 
(CI 60-100%) 

0.23 
(CI 0.05-0.42) BESA - 12 2 8 

Clinical report + 8 2 0 91%  
(CI 69-98%) 

100%  
(CI 60-100%) 

0.80 
(CI 0.54-1.00) Clinical report - 1 1 8 

HE = human experts, + = IEDs detected, ± = only possible IEDs detected, - = no IEDs detected, M = medium setting, 
L = low setting, IEDs = interictal epileptiform discharges. 
* possible epileptiform selections and epochs were considered as epileptiform when calculating sensitivity, 
specificity and kappa score. 
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All three software packages missed epileptiform discharges in one particular record 
containing multiple IEDs, which could be interpreted as eye closure sensitivity (Figure 2). 
Encevis missed all IEDs in a further two records containing one and four focal IEDs. The BESA 
software missed 12 records containing IEDs; in four records, no accurate detection was made. 
In eight records, IEDs were detected but only presented in the residuals.  

 
The example is shown in an average reference montage. 

Figure 2. Example of the eye closure sensitivity all three software packages missed. 

 

 10-second epochs 

The kappa between the experts was 0.63 (CI 0.50-0.76; Table 1). Sensitivity, specificity and 
kappas are shown in Table 3. 
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Table 3. IED detections per 10-second epoch 

 HE + HE ± HE - Sensitivity* Specificity* Kappa* 

Persyst +(M) 374 128 215 82% 
(CI 79-85%) 

96% 
(CI 95-96%) 

0.72 
(CI 0.69-0.75) Persyst – (M) 45 66 4572 

Persyst + (L) 320 70 35 64%  
(CI 60-67%) 

99%  
(CI 99-96%) 

0.73 
(CI 0.70-0.76) Persyst – (L) 99 124 4752 

Encevis + 341 34 45 61% 
(CI 57-65%) 

99% 
(CI 99-99%) 

0.67 
(CI 0.63-0.70) Encevis - 98 180 4702 

BESA + 259 30 56 50%  
(CI 46-54%) 

99%  
(CI 98-99%) 

0.57 
(CI 0.53-0.61) BESA - 150 174 4731 

HE = human experts, + = IEDs detected, - = no IEDs detected, M = medium setting, L = low setting, IEDs = interictal 
epileptiform discharges 
* possible epileptiform selections and epochs were considered as epileptiform when calculating sensitivity, 
specificity and kappa score. 

 

Discussion 

Persyst in the medium (default) setting achieved the highest sensitivity, together with a 
reasonable specificity, which is appropriate when using the software as a screening tool. 
BESA had missed the most IEDs, mainly due to the cluster system, in which some of the 
missed IEDs were initially detected but categorized in the residual section where they are 
easily missed. Persyst, in the low setting, and BESA had the highest specificity.  

These specificities are higher than reported in previous studies [14,15,16,17], probably due to 
the fact that we did not review single IEDs, but measured whether 10-second epochs and 30-
minute selections contained IEDs.  

Kappa's for detection of IEDs between human experts were 0.69 for 30-minute and 0.63 for 
10-second periods. Similar interrater kappas have been reported in the literature [18,19]. 
Comparing the gold standard and the software packages, kappa ranged between 0.23 (BESA) 
and 0.83 (Persyst). The Persyst and Encevis software packages show similar interrater 
agreements when compared to the agreement between human experts and the original 
clinical report. 

Together with our previous findings [7], our results suggest that automated spike detection 
can perform almost as well as human review when reviewing EEGs. Detections made by the 
software must always be checked and verified by experts, especially when using the software 
as a screening tool without complete visual EEG assessment; this requires high sensitivity, 
usually associated with lower specificity.  
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The study has some limitations. Our results cannot be applied to paediatric or sleep EEGs. To 
minimize the problem of the low interrater agreement for detecting IEDs [19] and to address 
the most relevant clinical question, i.e. whether or not a record contains IEDs, we did not 
count the number of IEDs but focused on whether or not IEDS were detected per selection 
or epoch. The exact number of IEDs counted by human experts is likely to differ between 
experts and even within the same expert, and some waveforms will remain a matter of 
discussion. An objective quantification by software might be a better index than human 
expert counting to study its clinical relevance. This approach also ensures each record is taken 
equally into account when calculating performance. We also included epochs with possible 
IEDs, whereas most studies use a simple spike or no-spike characterization when experts 
label IEDs in a record [14,18]. This resulted in medium to high kappa scores. Lastly, we 
reviewed 30-minute selections in this work, whereas prolonged EEGs can last for hours or 
days. 

Future work must focus on reviewing the entire prolonged EEG, preferably together with 
automated seizure detection, as in our previous study [7] and an additional study [20], to 
investigate whether automated software can (partially) replace visual review of the EEG. 
Implementing automated software is also challenging; we know that experts’ confidence in 
this software is low, and using the software requires a different approach than conventional 
human review.  

IED detection by automated software from the Persyst performs better than Encevis and 
BESA and is similar to human review, when reviewing 30-minute selections and 10-second 
epochs. This finding may help prospective users choose a software package. 

  



4

Automated spike detection: which software package? 

49 
 

References 

1. Fountain NB, Freeman JM. EEG is an essential clinical tool: pro and con. Epilepsia. 
2006;47:23–5. https://doi.org/10.1111/j.1528-1167.2006.00655.x. 

2. Chih-hong Lee a, Siew-Na Lim a, Frank Lien b, Tony Wua,* Duration of 
electroencephalographic recordings in patients with epilepsy. Seizure 22 (2013) 438–
442. http://dx.doi.org/10.1016/j.seizure.2013.02.016. 

3. Wirrell ED. Prognostic significance of interictal epileptiform discharges in newly 
diagnosed seizure disorders. J Clin Neurophysiol. 2010;27:239-48. 
https://doi.org/10.1097/WNP.0b013e3181ea4288. 

4. Guray Koca,⁎, Gulin Morkavukb, Efdal Akkayab, Omer Karadasa, Alev Leventoglub, 
Bulent Unayc, Zeki Gokcild. Latencies to first interictal epileptiform discharges in 
different seizure types during video-EEG monitoring. Seizure: European Journal of 
Epilepsy 69 (2019) 235–240. https://doi.org/10.1016/j.seizure.2019.05.013. 

5. Halford JJ. Computerized epileptiform transient detection in the scalp 
electroencephalogram: Obstacles to progress and the example of computerized ECG 
interpretation. Clin Neurophysiol. 2009;120:1909-15. 
https://doi.org/10.1016/j.clinph.2009.08.007. 

6. Lodder SS, van Putten MJ. A self-adapting system for the automated detection of inter-
ictal epileptiform discharges. PLoS One. 2014;9:e851-80.  
https://doi.org/10.1371/journal.pone.0085180. 

7. Reus EEM, Visser GH, Cox FME. Using sampled visual EEG review in combination with 
automated detection software at the EMU. Seizure. 2020;80:96-9. 
https://doi.org/10.1016/j.seizure.2020.06.002. 

8. Urbaniak GC, Plous S. Research Randomizer (Version 4.0). 
https://www.randomizer.org/; 2013. [assessed 9 September 2021]. 

9. Kane N, Acharya J, Beniczky S, Caboclo L, Finnigan S, Kaplan PW et al. A revised glossary 
of terms most commonly used by clinical electroencephalographers and updated 
proposal for the report format of the EEG findings. Revision 2017. Clin Neurophysiol 
Prac. 2017;2:170-85. http://dx.doi.org/10.1016/j.cnp.2017.07.002. 

10. Wilson SB, Turner CA, Emerson RG, et al. Spike detection II: automatic, perception-
based detection and clustering. Clin Neurophysiol. 1999;110:404-11. 
https://doi.org/10.1016/s1388-2457(98)00023-6. 

11. Reus EEM, Visser GH, Cox FME. Determining the Spike–Wave Index Using Automated 
Detection Software. J Clin Neurophysiol. 2021;38:198–201. 
https://doi.org/10.1097/WNP.0000000000000672. 



Chapter 4 

50 
 

12. Hartmann MM, Furbass F, Perko H, Skupch A, Lackmayer K, Baumgartner C, et al. 
EpiScan: online seizure detection for epilepsy monitoring units. 2011 Annu. Int. Conf. 
IEEE Eng. Med. Biol. Soc. IEEE. 2011:6096–9. https://doi.org/10.1109/IEMBS. 

13. Scherg M, Ille N, Weckesser D, Ebert A, Ostendorf A, Boppel T et al. Fast evaluation of 
interictal spikes in long-term EEG by hyper-clustering. Epilepsia. 2012;53(7):1196–1204. 
https://doi.org/10.1111/j.1528-1167.2012.03503.x. 

14. Scheuer ML, Bagic A, Wilson SB. Spike detection: Inter-reader agreement and a 
statistical Turing test on a large data set. Clin Neurophysiol. 2016;128:243-50. 
https://doi.org/10.1016/j.clinph.2016.11.005. 

15. Jing J, Sun H, Kim JA, Herlopian A, Karakis J, Ng M, et al. Development of Expert-Level 
Automated Detection of Epileptiform Discharges During Electroencephalogram 
Interpretation. JAMA Neurol. 2020;77:103-8. 
https://doi.org/10.1001/jamaneurol.2019.3485.  

16. Halford JJ, Brandon Westover M, LaRoche SM, Macken MP, Kutluay E, Edwards JC et al. 
Interictal Epileptiform Discharge Detection in EEG in Different Practice Settings. J Clin 
Neurophysiol 2018;35: 375–380. https://doi.org/10.1097/WNP.0000000000000492. 

17. Fürbass F, Kural MA, Gritsch G, Hartmann M, Kluge T, Beniczky S. An artificial 
intelligence-based EEG algorithm for detection of epileptiform EEG discharges: 
Validation against the diagnostic gold standard. Clin Neurophysiol. 2020;131:1174-79. 
https://doi.org/10.1016/j.clinph.2020.02.032. 

18. Bagheri E, Dauwels J, Dean BC, Waters CG, Westover BM, Halford, JJ. Interictal 
epileptform discharge characteristics underlying expert interrater agreement. Clin 
Neurophysiol. 2017;128:1994–2005. https://doi.org/10.1016/j.clinph.2017.06.252. 

19. Grant AC, Abdel-Baki SG, Weedon J, Arnedo V, Chari G et al. EEG interpretation reliability 
and interpreter confidence: A large single-center study. Epilepsy Behav. 2014;32:102-7. 
https://doi.org/10.1016/j.yebeh.2014.01.011. 

20. Reus EEM, Visser GH, van Dijk JG, Cox FME. Automated seizure detection in an EMU 
setting: Are software packages ready for implementation? Seizure 2022;96:13-7. 
https://doi.org/10.1016/j.seizure.2022.01.009. 

 



4



 

 

 

 

 

 



 

 

CHAPTER 5 

 

Automated seizure detection in an EMU setting: are 

software packages ready for implementation? 

 

 

 

 

E.E.M. Reus 
G.H. Visser 
J.G. van Dijk  
F.M.E. Cox  
 

 

Seizure 2022;96:13-7.  
https://doi.org/10.1016/j.seizure.2022.01.009.



Chapter 5 

54 
 

Chapter 5 - Automated seizure detection in an EMU setting: are 
software packages ready for implementation? 

 

Abstract 

Purpose: We assessed whether automated detection software, combined with live 
observation, enabled reliable seizure detection using three commercial software packages: 
Persyst, Encevis and BESA.  

Method: Two hundred and eighty-six prolonged EEG records of individuals aged 16 – 86 years, 
collected between August 2019 and January 2020, were retrospectively processed using all 
three packages. The reference standard included all seizures mentioned in the clinical report 
supplemented with true detections made by the software and not previously detected by 
technicians. Sensitivity was measured for offline review by technicians and software seizure 
detection, both in combination with live monitoring in an EMU setting, for all three software 
packages at record and seizure level.  

Results: The database contained 249 seizures in 64 records. The sensitivity of seizure 
detection was 98% for Encevis and Persyst, and 95% for BESA, when a positive results was 
defined as detection at least one of the seizures occurring within an individual record. When 
positivity was defined as recognition of all seizures, sensitivity was 93% for Persyst, 88% for 
Encevis and 84% for BESA. Technicians’ review had a sensitivity of 100% at record level and 
98% at seizure level.  The median false positive rate per record was 1.7 for Persyst, 2.4 for BESA 
and 5.5 for Encevis per 24 hours. 

Conclusion: Automated seizure detection software does not perform as well as technicians 
do. However, it can be used in an EMU setting when the user is aware of its weaknesses. This 
assessment gives future users helpful insight into these strengths and weaknesses. The 
Persyst software performs best. 
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Introduction 

Seizure recording using video-EEG plays an essential role in diagnosing epilepsy, seizure 
classification and identification of candidates for epilepsy surgery [1,2]. Prolonged EEG 
recordings improve the chances of finding ictal activity [3]. Longer recordings, however, 
result in more review time and a cost increase. 

The typical procedure of recording a prolonged EEG in an Epilepsy Monitoring Unit (EMU), 
involves continuous observation of individuals by trained nurses and staff, as well as alerts by 
patients who press an alarm at the onset of a perceived seizure [4]. This procedure detects 
around two-thirds of all seizures [5], and the remaining one third is detected by technicians 
who later review the entire EEG record offline. Automated detection software may serve as 
a screening tool to reduce the need for complete visual reviewing of the recording and save 
time, provided it is sufficiently reliable.  

A pilot study showed that automated detection software in combination with sampled visual 
review could be used as a reliable substitute for a complete visual review of prolonged video-
EEGs concerning IEDs (interictal epileptiform discharges) [6]. The number of seizures in that 
study was however too low to validate the performance of the automated seizure detection, 
not yet allowing its use as a substitute for visual review.  

To approach the real life use of seizure detection software, we compared the seizure 
detection performance using online human observation (in live setting by trained nurses) in 
combination with both conventional review by technicians and software seizure detection 
using three commercially available software packages.  

 

Method 

 EEG data 

We retrospectively collected 286 anonymous prolonged video-EEG records (> 4 hours) from 
283 individuals aged at least 16 years between Augustus 2019 and January 2020. EEG data 
were recorded using the Micromed EEG system (Micromed, Mogliano Veneto, Italy), using 
the standard 10-20 international electrode recording and additional F9/F10 positions sampled 
at 256 Hz. We recorded EEGs exclusively in the context of clinical care, so, according to Dutch 
rules, individual informed consent was not required. The local medical ethics committee 
approved this study. 
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Automated detection software packages 

We used three commercially available software packages: Persyst (Persyst Development 
Corporation, USA) version 14, Encevis (AIT Austrian Institute of Technology, Austria) 
detection), version 1.9.2. and BESA (BESA Epilepsy, Germany) version 2.0. Encevis is the only 
package that also uses the ECG channel for seizure detection. For all three packages, the 
output is a list of timed seizure detections. Additionally, BESA also presents lateralization 
information (i.e. left, right). We used only the seizure detection features of the software, 
ignoring other tools.  

 

 Reference standard  

The EEG data of all seizures mentioned in the original EEG report were reviewed in a 
consensus procedure by at least one technician and one epileptologist. Seizures were 
categorized according to when the seizure was first detected: in the live setting, i.e. through 
nurses’ observations and individuals’ alarm buttons, or offline through technicians’ review. 
All detections were recorded into a sheet. EEG outside seizure selections was not reviewed.  

The same records were analyzed with the three automated detection software, and all 
detections made by one or more software packages were compared with the seizures 
mentioned in the original EEG report. Detections were classified as congruent if the software 
detection fell within a time window of 30 seconds before the onset or after the end of the 
seizure, and incongruent otherwise. 

All incongruent detections were reviewed by a trained human expert with more than five 
years’ experience in reviewing EEGs. An actual seizure detection was defined as repetitive 
epileptiform EEG discharges of >2 Hz or a characteristic pattern with a quasi-rhythmic spatio-
temporal evolution (i.e. a gradual change in frequency, amplitude, morphology or location), 
usually lasting ten or more seconds [7]. A second human expert then double-checked this. 
Software detections that did not meet the criteria were considered false detections. Two or 
more false software detections within 60 seconds were counted as a single false detection.  

The reference standard included all seizures mentioned in the clinical report supplemented 
with true detections made by the software and not previously detected by technicians. The 
durations of all ictal EEG patterns were identified, and seizure classification was determined 
using the latest ILAE seizure classification [8]. Only the first ten seizures per EEG record were 
included to reduce sampling bias. We regarded records in which any seizure was detected as 
positive for epilepsy, regardless of whether all seizures in that record had been identified. 

  Analysis 

In an EMU setting most seizures are detected in the live setting, so our primary outcome 
measure was the sensitivity for live seizure detection in combination with both offline review 
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by technician and software seizure detection for all three software packages. Differences in 
performance between the technicians and all three software packages were analyzed using 
the McNemar test for non-parametric data using SPSS (IBM Corp. Released 2019. IBM SPSS 
Statistics for Windows, Version 26.0. Armonk, NY: IBM Corp.) We made a distinction between 
seizures with no or short (< 10 seconds) ictal pattern and seizures with a seizure pattern 
duration of at least 10 seconds. We also measured sensitivity using the software seizure 
detection alone, including the seizures detected online. Finally we estimated the false 
positive rate per 24 hours. 

 

Results 

Database characteristics 

We included 286 prolonged EEG records from 283 people (135 male, 148 female) with a 
median age of 36 years (range 16 – 86 years) and a summed recording time of over 8771 hours. 
The median duration was 20 hours and 40 minutes (range 4 hours and 3 minutes to 97 hours 
and 56 minutes).  

There were 336 seizures in 64 records (range 1 – 39 seizures per record). From the eight 
records with more than ten seizures we included the first ten, remaining 249 seizures for 
further analysis.  

 

Performance per record 

Of the 64 records containing seizures, 56 were recognized as containing seizures in the live 
setting. In the later offline review, technicians detected seizures in an additional eight 
records. The software packages did not identify one record which contained one generalized 
myoclonic event. BESA missed two further records, one having a focal seizure and one 
containing an electroencephalographic seizure. See Figure 1. Hence, sensitivity for the 
combination of live observation and offline review by technician was 100% (CI 93-100%). 
Sensitivity for the combination of live observation and automated detection using Persyst 
and Encevis was 98% (CI 90–100%) and 95% (CI 86–99%) when using BESA. There was no 
statistically significant difference in performance between the reference standard and either 
of the software packages (for all P > 0.05) nor between the reference standard and the 
technician (P > 0.05).  
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Figure 1. performance software packages on record level. 
 

Table 1. Seizures detected in live setting or by technicians 

  
Total # 

# first 
detected in 
live setting 

(online) 

# first 
detected by 
technician  
(off line) 

# not 
detected  

(live or by 
technician) Seizure type 

Generalized tonic clonic 1 1 0 0 
Focal to bilateral tonic clonic 13 13 0 0 
Focal impaired awareness 80 69 11 0 
Focal aware/unknown - motor 59 49 8 2 
Focal aware – non motor 26 26 0 0 
Absence 11 4 7 0 
Generalized myoclonic 21 15 6 0 
Generalized tonic 14 3 11 0 
Focal electro-encephalographic 24 4 17 3 

Total # 249 184 60 5 

Duration ictal EEG ≥ 10 seconds 146 95 46 5 
Duration ictal EEG < 10 seconds 103 89 14 0 

# = number of seizures 
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Performance per seizure 

Of the 249 seizures, 184 were recognized in the live setting. Table 1 shows the recorded 
seizure types, the duration of ictal patterns, and the technicians' performance. Sensitivity for 
the combination of live monitoring and offline review by a technician was 98% (CI 95–99%). 
The five undetected seizures were all focal in nature.  

 

Table 2. Seizures not detected online  

 
 

Total # 
not 

detected  
online 

 
# detected 
by Persyst 

 
# detected 
by Encevis 

 
# detected 

by BESA  
Seizure type 
Generalized tonic clonic 0 0 0 0 
Focal to bilateral tonic clonic 0 0 0 0 
Focal impaired awareness 11 11 10 7 
Focal aware/unknown - motor 10 8 7 5 
Focal aware – non motor 0 0 0 0 
Absence 7 6 6 5 
Generalized myoclonic 6 0 0 0 
Generalized tonic  11 5 2 1 
Focal electro-encephalographic 20 18 10 6 

Total # 65 48 35 24 

Duration ictal EEG ≥ 10 seconds 51 48 34 24 
Duration ictal EEG < 10 seconds  16 0 1 0 

# = number of seizures 

 

Table 2 and Figure 2 show the performance of the three software packages. Sensitivity for 
the combination of live monitoring and seizure detection by Persyst was 93% (CI 89–96%), by 
Encevis 88% (CI 83–92%), and by BESA 84% (CI 78–88%). The differences in performance 
between the technician and the software packages were significantly different (Persyst, P = 
0.02; Encevis P < 0.001; BESA P < 0.001). The undetected seizures are shown in table 2; they 
mostly concerned generalized myoclonic, generalized tonic seizures. Whether focal seizures 
remained undetected depended on the software package (Table 2). Closer inspection of the 
focal seizures showed subtle events, with slowly evolving ictal patterns with low amplitudes 
and frequencies (See Supplementary data). The generalized myoclonic seizures had short 
(one to two seconds) ictal patterns and occurred in people with a (suspected) generalized 
myoclonic epilepsy. The missed tonic seizures had somewhat longer (two to five seconds) 
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ictal patterns and occurred only in individuals with mental impairment and a history of tonic 
seizures.  

 

 

Figure 2. performance software packages on seizure level. 

 

Table 3. Total number of seizures 

 
Total # # detected 

by Persyst 
# detected 
by Encevis 

# detected 
by BESA 

Total # 249 139 129 107 

Duration ictal EEG ≥ 10 seconds 146 133 121 101 

Duration ictal EEG < 10 seconds 103 6 8 6 
# = number of seizures 

 

Sensitivity regarding all 249 seizures was 56% (CI 49-62%) for Persyst, 52% (CI 45 – 58%) for 
Encevis and 43% (CI 37 – 49%) for BESA. Sensitivity regarding seizures with an EEG pattern 
lasting 10 seconds or longer was 91% (CI 87–94%) for Persyst, 83% (CI 77-87%) for Encevis 
detected and 69% (CI 63-75%) for BESA detected (Table 3). 
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False positive detections 

False positive rate for Persyst is 1.7 per 24 hours, for Encevis 5.5 per 24 hours and for BESA 2.4 
per 24 hours. Most of the false positives were chewing artifacts, non-seizure related 
tachycardia (Encevis), muscle artifacts, movement artifacts or interictal activity. 

 

Discussion 

Seizure detection by a combination of live monitoring and automated software had a 
sensitivity of 95% (BESA) and 98% (Encevis, Persyst) when aiming to detect at least one of the 
seizures occurring within an individual record and sensitivity of 84% (BESA), 88% (Encevis) and 
93% (Persyst) when aiming to detect all seizures. Technicians’ review had a sensitivity of 100% 
on record level and 98% on seizure level. Hence, Persyst detected the highest number of 
seizures, and BESA the lowest. The software packages performed better on seizures with 10 
seconds or longer duration. We found a false positive rate of 1.7 and 2.4 per 24 hours when 
using Persyst and BESA, which we considered acceptable. This false positive rate is lower than 
reported in previous literature, using an older version of Persyst [9]. A validation study of the 
currently used version (P14) reported false positive rate comparable to present study [10]. 
Encevis showed a considerably higher false positive rate.  

Earlier studies found that detection algorithms had a sensitivity for epileptic seizures 
between 73% and 96% [11,12]. A recent study comparing the same three software packages 
reported a sensitivity of 76.6% for BESA, 77.8% for Encevis and 81.6% for Persyst on a database 
containing largely focal seizures [9]. In our study we approach how the software would really 
be used in an EMU setting, by reviewing the combination of live human observation and 
offline review, comparing the performance of the technicians versus the software. 
Furthermore our database also contains generalized seizures, such as myoclonia and tonic 
seizures. Sensitivities for these seizure types, and for focal aware seizure, are low. This is due 
to the fact that they usually have no or short EEG correlates [13]. The highest sensitivities are 
reported for (focal to) generalized tonic-clonic seizures and focal seizures with impaired 
awareness [13]. 

Both the present study and previous reports suggest that detection software does not 
perform as well as technicians. We believe, however, that detection software can be of use 
provided the user is aware of its weaknesses. Patients can usually detect myoclonus and focal 
aware seizures themselves, and report them via the push button [14,15]. This does not apply 
to generalized tonic seizures; our data show a large proportion of those were undetected in 
the live setting. This seizure type usually occurs in people with mental impairment with a 
history of tonic seizures. We suggest EEGs of this population should be thoroughly visually 
reviewed to avoid missing significant events. Our previously proposed method with a 
targeted sampled review, including a period after waking in people with suspected JME, can 
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also increase seizure detection [6]. Thus, the ictal patterns seen in myoclonic seizures, which 
are usually are too short to be detected by a seizure detector, will be detected by a spike 
detector. To a lesser extent, slowly evolving seizures with low amplitudes and frequencies 
can also be missed by the software. Previous literature shows that the use of quantitative 
EEG spectrograms can increase the detection of these seizures [16]. Automated detection 
software, however, also detected five additional seizures, which were initially missed in the 
offline review by the technician. Finally, in the design of this study we used automated seizure 
detection as a screening tool. Detections made by the software must always be checked and 
verified by experts. 

Our study has some limitations. It is a single centre study and results may differ in other 
settings. We also only used EEG recordings from teenagers and adults, so our results do not 
apply to paediatric EEGs. We only focused on seizure detection. In an additional, yet 
unpublished, study we also compare the performance of the spike detection features of 
these software packages [17]. We used a pragmatic approach for the reference standard. 
However, ideally the EEG records should be reviewed in their totality and by two 
epileptologists. Furthermore, the online usability of these detection software packages 
should be investigated, as they might possibly be beneficial for patient safety and ictal 
testing. Lastly, it would be insightful to look at experts’ confidence of this software.  

Automated seizure detection software does not perform as well as technicians do. However, 
it can be used in an EMU setting when the user is aware of its weaknesses. The software is 
most sensitive to focal seizures with impaired awareness and tonic clonic seizures and least 
sensitive to generalized tonic and generalized myoclonic seizures.  
The use of such detection software can potentially save time. This assessment may give 
future users helpful insight into the strengths and weaknesses of this software and help 
prospective users choose a software package. The Persyst software has the best 
performance. 
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Chapter 6 – Automated spike and seizure detection: are we ready for 
implementation? 

 

Abstract 

Purpose: Automated detection of spikes and seizures has been a subject of research for 
several decades now. There have been important advances, yet automated detection in EMU 
(Epilepsy Monitoring Unit) settings has not been accepted as standard practice. We intend to 
implement this software at our EMU and so carried out a qualitative study to identify factors 
that hinder (‘barriers’) and facilitate (‘enablers’) implementation. 

Method: Twenty-two semi-structured interviews were conducted with 14 technicians and 
neurologists involved in recording and reporting EEGs and eight neurologists who receive 
EEG reports in the outpatient department. The study was reported according to the 
Consolidated Criteria for Reporting Qualitative Studies (COREQ). 

Results: We identified 14 barriers and 14 enablers for future implementation. Most barriers 
were reported by technicians. The most prominent barrier was lack of trust in the software, 
especially regarding seizure detection and false positive results. Additionally, technicians 
feared losing their EEG review skills or their jobs. Most commonly reported enablers included 
potential efficiency in the EEG workflow, the opportunity for quantification of EEG findings 
and the willingness to try the software. 

Conclusion: This study provides insight into the perspectives of users and offers 
recommendations for implementing automated spike and seizure detection in EMUs. 
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Introduction 

Machine learning has increasingly been used and been the subject of research in health care 
with the aim of improving efficiency [1]. Fields of interest in epilepsy include analysis of 
imaging and clinical data, epilepsy source localization, prediction of medical and surgical 
outcomes, and automated EEG-based detection [2]. The latter has been the scope of research 
for several decades [3,4,5], with some remarkable achievements [6,7]. The research focused 
on development and testing of new detection algorithms; validation studies of various 
commercially available software packages were published, often with promising 
results [8,9,10,11,12,13]. Despite these publications and advances automated EEG-based 
detection in EMU (Epilepsy Monitoring Unit) settings has not been accepted as standard 
practice. 

Implementing changes in health care practice is often challenging. Successful 
implementation largely depends on acceptance by professionals; that is, the extent to which 
they believe that a given innovation is agreeable or satisfactory, and a willingness to try an 
innovation [14]. 

In the current qualitative study we surveyed thoughts, attitudes, experiences and needs of 
both producers and recipients of EEG reports regarding automated EEG-based detection, 
using semi-structured interviews. We aimed to identify factors that hinder (‘barriers’) and 
facilitate (‘enablers’) future implementation. This information may help guide successful 
implementation of such software. 

 

Method 

We conducted semi-structured interviews using a phenomenological approach. Method and 
results were reported according to the Consolidated Criteria for Reporting Qualitative Studies 
(COREQ) [15]. 

 
Current EEG (review) process 

The study was performed in Stichting Epilepsie Instellingen Nederland (SEIN), a tertiary 
referral center with two clinical locations (Heemstede and Zwolle) and an outpatient clinic 
network. Each location has an Epilepsy Monitoring Unit (EMU) where we perform 
prolonged EEG recordings [16]. 
 

Participants 

We applied consecutive sampling for the selection of participants: all technicians, 
neurologists and physician assistants working at both clinical neurophysiology departments 
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and all neurologists at the outpatient clinics received an email invitation to participate in the 
study. Potential participants were invited for interview by email. Prior to the invitation, they 
attended a presentation about the use of automated detection for reviewing prolonged 
EEGs, including previous research on automated detection [9,10,11] and our proposed 
method of using automated detection in combination with sampled review [17], see Figure 1.  

 

 
Figure 1. Current EEG workflow (left) and possible future EEG workflow (right). 

 

Nineteen of 36 clinical neurophysiology staff members and twelve of 29 outpatient clinic 
neurologists who we contacted were willing to participate in an interview. Based on the 
reached data saturation, we included nine technicians (participants TC1 to TC9), five medical 
staff members, consisting of neurologists and physician assistants (participants MC1 to MC5), 
and eight outpatient clinic neurologists (participants MO1 to MO8). No participant dropped 
out. Seventeen of the 22 participants were familiar with the interviewer, and all participants 
knew that the researcher was involved in research on automated EEG detection. 

 

Data collection 

Semi-structured interviews were conducted by ER, a female physician assistant and research 
fellow working at the department of clinical neurophysiology. ER was trained to perform 
semi-structured interviews. The training included discussion of content and practicalities 
regarding qualitative interviewing, as well as practice interviews including reflection and 
feedback afterwards. 
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The preliminary interview questions underwent pilot testing with two non-participating 
colleagues prior to the commencement of the study. Feedback was solicited from the 
participants at the end of the pilot interviews and subsequently integrated into the final 
interview protocol. The same set of questions was used for all participants, and all 
participants were interviewed once. Topics regarded experience with, knowledge of, and 
trust in automated EEG-based detection. In addition, technicians and neurologists at the 
clinical neurophysiology departments were interviewed about their current EEG review 
method, as well as willingness to work with automated EEG-based detection and 
requirements necessary for that. Most such questions were open ended. Only the interviewer 
and the participant were present during the interview, which took place within the institution 
or online. 

Interviews were semi-structured with open-ended questions to facilitate participant led, free-
flowing conversation. Participants could raise new subjects. Interviews lasted between 14 
and 42 min. After each interview, the interviewer asked whether the participant was satisfied 
with all the answers or wanted to add anything. We continued to invite participants until data 
saturation was reached; that is, no new information was gathered and no new themes or 
subjects had emerged in the last three interviews. The range of work experience of the 
participants was 3 to 46 years (median 12 years). 

 

Data analysis 

Interviews were audio recorded and transcribed in full. No field notes were made. 
Participants did not receive interview transcripts. Software package NVivo was used to 
analyze interview transcripts (QSR International Pty Ltd. Version 12, 2020). ER coded the 
interviews using an inductive thematic analysis [18]. All coded interview transcripts were 
reviewed for a second time and were discussed within the research team until consensus was 
reached on all themes. Quotes were selected to illustrate the final themes. 

 

Ethical approval 

This study was approved by the institutional review board of SEIN. All participants gave their 
written informed consent prior to the interview. 

 

Results 

Clinical neurophysiology: technicians, physician assistants and neurologist 

We identified 13 barriers and 13 enablers, see Table 1 and 2.  
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Table 1. Barriers regarding use of automated detection software. 

 
Barriers 

 
Technicians 

Neurologists 
and PAs clin 
neurophys 

Neurologists 
outpatient 

department 

Satisfaction with quality of current review process X X X 

Colleagues’ presumed unwillingness to try X   

Technicians need a lot of training and guidance in 
order to use the software 

 X  

Teaching EEG review to new students is 
suboptimal with new review method X   

Fear losing ability to review long periods of EEG X   

Previous experience with automated seizure 
detection was disappointing X   

Can only be used as supplement, not as (partial) 
replacement X   

Only works in EEGs with normal background X   

Too many false positives X   

Software sometimes malfunctions X X  

Software doesn't perform as well as human 
experts do X   

Fear of missing (subtle) seizures or other 
important information X X X 

Fear of missing non-specific EEG abnormalities   X 

Fear of losing job X   

X = subject was mentioned by at least one participant, clin neurophys = clinical neurophysiology department, 
PAs = physician assistants. 
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Table 2. Enablers regarding use of automated detection software. 

 
Enablers 

 
Technicians 

Neurologists 
and PAs clin 
neurophys 

Neurologists 
outpatient 

department 

Current EEG reviewing process is time-consuming X X  

Need for more efficient workflow X X X 

Software can potentially make workflow more 
efficient X X X 

Possibility of growing future trust in the software X   

Positive attitude among most participants X X  

The need to adopt machine learning in modern 
diagnostics X X X 

Presentations and discussions about the subject 
increased willingness use X   

Trust in neurologists and PAs of Clin Neurophys to 
use the software only when it performs properly 

  X 

Willingness to try themselves X X X 

Opportunity for technicians to learn new skills  X  

Trend analyses have added value X X  

Helpful in identifying subtle EEG changes over time X   

Can quantify (interictal and ictal) events X X X 

Prefer review by automated EEG-based detection 
when it means the workflow is faster 

  X 

X = subject was mentioned by at least one participant, clin neurophys = clinical neurophysiology department, 
PAs = physician assistants. 
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Current review process 

Technicians were satisfied with the quality of the current review process, which they felt 
ensured that no important information was missed: “I don't think that we miss important 
information” (TC1). The medical staff agreed: “I have the impression that EEGs are read very 
carefully” (MC1). Some technicians mentioned the labor intensiveness of the review 
process: “It is a lot of work. We record quite a few hours of EEG” (TC2). Neurologists and 
physician assistants also stated that reviewing EEGs took a technician a long time: “It is a time-
consuming process, especially for technicians …They are really working on it for many 
hours” (MC4). 

 
 Necessity 

The need for a more efficient workflow was recognized by most technicians and all medical 
staff: “Somehow it has to be made more efficient and faster” (MC1); “Health care is only getting 
more expensive” (MC4). Respondents felt automated EEG-based detection could play a role 
in this: “You don't suddenly have more EEG technicians. So you have to make an efficiency move 
in a different way” (MC4). 

Technicians, physician assistants and neurologists thought automated detection could help 
quantify epileptiform discharges: “If you receive a score which says this abnormality occurs 600 
times, that quantifies it more than an estimation by words” (TC6); “An algorithm can quantify 
the spikes for us… this will save the technician time” (MC3). Additionally, automated detection 
could help detect gradual changes over time; “you don't always immediately see the EEG is 
gradually slowing in, for instance, presurgical patients.” (TC4). 

 

 Previous experience 

Most participants reported no prior use of automated EEG detection. However, some 
previously worked with trend analyses, automated seizure detection or automated spike 
detection software. Users were positive regarding trend analyses: “It is useful to be able to 
see it objectively” (TC3), but negative toward automated seizure detection: “I found the 
results disappointing” (TC2). Previous experience with spike detection had two aspects: users 
were satisfied with the interface: “very nice averages of spikes“ (TC6), but more skeptical 
about the rate of false positive results: “especially with muscle artifacts” (TC6). 

 

Willingness 

Most technicians felt that future use of automated EEG-based detection was 
unavoidable: “We can't get around it anymore, so we have to deal with it” (TC3); “So much data 
is quantified, we can't stay behind with the EEG” (TC4). All technicians stated they were willing 
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to try using automated EEG-based detection. Some participants proposed initially using the 
detection software as an additional review method, along with complete visual review: “by 
doing it simultaneously for a while. Just to experience the software” (TC5); “I think we need to 
do both at first. That is the investment we need to make to find out if it is working or not” (TC4). 
Some technicians compared the change to using automated EEG-based detection for review 
with the transition from analog to digital EEG: “In the beginning the digital EEG was also like 
‘oh, help’, and now you're so used to that” (TC4). 

Some technicians thought some colleagues would be hesitant to use the software: “I would 
want to start today, but I think maybe some technicians will need more time to get used to this 
and gain some confidence” (TC1). 

All neurologists and physician assistants stated willingness to try the software: “Medicine 
continues to develop and this is a form of development” (MC2). 

 

Trust in performance 

Most technicians did not trust the software to perform as well as they did. However, most 
stated that trust could grow with experience with the software: “I think that trust in these 
machines has to grow, trust that it performs well. I think that it will take a long time before you 
can say: ‘we will let the machine review the last couple of hours’” (TC2); “we need to gain trust 
in the system” (TC4). 

Some technicians said that not all seizures would be detected without visual review of the 
EEG: “We know patients do not always report their seizures adequately, and also that nurses 
can miss seizures, so…”(TC7). They felt that the software could not take over this part of EEG 
review. Regarding spike detection, technicians were mostly worried about false positives: “I 
think that it will take a lot of time. You can get confused or insecure about software detection, 
because the software detects a spike” (TC2). Some technicians thought automated EEG-based 
detection could only work in EEGs with normal background activity: “Detection is a lot simpler 
when you have a normal background pattern with low amplitude because spikes then 
distinguish themselves from background really clearly” (TC5). 

Most medical staff stated trust in the software. Others said they did not know yet, because 
they had not used it before: “I don't have an exact image of how sensitive automated detection 
is” (MC2). 

 
Fears 

One medical staff member noticed much distrust regarding implementation, in particular 
from technicians: “they also saw a danger to their own job. If everything is going to be 
automated, where would that leave them?” (MC4). Some technicians also mentioned a fear of 
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losing their job: “At the beginning, I indeed was skeptical, I thought I might lose my job. But 
when I heard more and we talked about it some more with colleagues, you begin to think this 
might be useful after all” (TC3); “The idea that you are kind of unnecessary, well, that is a 
difficult step” (TC2). 

Some technicians feared that teaching EEG review to trainee technicians would be less than 
optimal when using automated EEG-based detection, or that they themselves might lose the 
ability to review long periods of EEG, when only reviewing shorter parts of the EEG. They 
stated the need to see the raw EEG to keep or to gain experience: “You must continue 
reviewing longer periods of EEG, you can't learn if something is abnormal or not based on half 
an EEG page” (TC3). 

In addition, technicians feared loss of quality: “fear of missing something that you might have 
detected yourself” (TC2). 

 

User needs 

Technicians stated that they do not need much time to start working with the software, just 
proper instructions and clear guidelines: “Which part do I need to review visually? … And what 
do we do with the information we get from the software?” (TC4). Some of the medical staff 
felt in contrast that: “They [the technicians] need a lot of training and guidance in doing 
so” (MC4). 

 

Future use of the software 

Almost all participants said that automated EEG-based detection could at least have an 
assisting role. Some were surprised that this kind of detection software was not already used 
in clinical practice: “It already surprised me when I started working as a technician. And if we 
continue to review EEGs only visually for the next ten years. Well.. that sounds really old-
fashioned” (TC2); “We need to enter the 21st century” (MC4). 

Some technicians thought automated EEG detection would never take over the review 
workload: “I can't imagine that visual review by a technician will ever disappear.” (TC5). Others 
thought this might happen in the future, but not in the near future: “I have been doing this for 
5 years now, and for all these 5 years, the review process stayed the same. So I won't be surprised 
if we are still doing the same thing in 5 years’ time” (TC6); “It is going to be a long time before 
you can really say: ‘well, let's have the last few hours checked by a machine instead of a human 
expert’” (TC2). 

Most medical staff thought the visual review could in part be replaced by automated EEG-
based detection: “I think we can have some of the work done by the computer rather than just 
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by manpower“ (MC3), which would make the review process more efficient. Additionally, 
they saw an opportunity for the technician's job to evolve: “Then technicians will get some 
task shifting. Getting some different work instead of, well, scrutinizing those EEGs, which is also 
a waste of their qualifications” (MC5). 

Both technicians and medical staff agreed that automated detection must be reviewed by 
human experts: “You want to know if the detections are true and not for instance horizontal 
movements” (TC6). You also need a back-up in case of software malfunction: “I can imagine 
that such a program sometimes malfunctions” (MC1). 

 

Outpatient clinic neurologists 

We identified 3 barriers and 7 enablers, see Table 1. 

 

Quality current EEG process (recording, review and report) 

All participants were satisfied with the quality of the current EEG review and report: “The 
current EEG report is fine” (MO2). They felt that clinical neurophysiology staff were doing a 
good job: “they work meticulously and they know exactly what to look for” (MO6); “I always 
get an answer to my referral question” (MO5). Some neurologists would like to see 
epileptiform abnormalities quantified: “I like it myself if there is a kind of quantification of 
abnormalities, and if you have a previous EEG you can compare” (MO3). Others said they found 
this information less relevant. 

 

Necessity 

The need for more efficiency was recognized by all participants, pointing to increasing EEG 
data and decreasing availability of personnel: “I can see that reviewing EEGs takes a lot of time. 
And given the aging population … we can't expect that this amount of work can be done by 
humans alone” (MO1). Respondents also felt that waiting times were too long: “my only 
complaint are the long waiting times” (MO5). Most neurologists supported review with 
automated detection if this meant shorter waiting times: “If it helps speed things along I would 
rather have the software review the EEG” (MO2). 

 

Trust in performance 

Some neurologists were hesitant to trust the automated software to review EEGs, and 
doubted it provided the same quality as human reviewers: “If there is a chance that you miss 
something relevant. You don't want to miss that” (MO4); “I wonder, subtle ictal EEG changes, 
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does the software detect that? I have my doubts” (MO6); “Does it also detect slow 
activity?” (MO4). 

Others were fully confident that automated EEG-based detection software would only be 
implemented when it worked properly: “I trust the opinion of the clinical neurophysiology 
neurologists” (MO3); “We [outpatient clinic neurologists] know that it is carefully looked 
after” (MO1). 

 

Future use of the software 

All outpatient clinic neurologists thought automated detection software would be used 
within the next 5 years: “I think that will be the next step” (MO2); “That would be great, that 
we indeed are confident” (MO6); “I think that much more will be automated in the 
future” (MO1). One respondent thought it would only be used on a small scale: “I think it will 
be used for specific purposes” (MO4). Respondents mentioned that a control system must 
be built in, to ensure no important information would be missed: “Provided it is properly 
checked. I think you should check that randomly“ (M07); “As long as there is a human 
check” (MO8). Finally, most neurologists stated they did not want to have a say in deciding 
whether or not automated EEG-based software would be implemented, but wanted to be 
informed: “It would be great if we were kept informed” (MO8). 

 

Discussion 

Nearly all participants expressed a need for a more efficient workflow and believed that 
automated EEG-based detection could play a role in this. They stressed that this kind of 
detection software could adapt EEG review to growing healthcare costs and personnel 
shortage. Furthermore, the EEG report producers group felt trends analyses have additional 
value, and that they are were willing to try the software. 

We also noted significant challenges. The most prominent barrier was trust in the software, 
especially regarding automated seizure detection. Both producers and recipients of EEG 
reports feared the software would miss seizures or other important information. Most 
additional barriers were reported by technicians. Most believed that automated EEG-based 
detection could only be used as a supplement, mainly useful to quantify EEG spike detections, 
and not as (partial) replacement. Additionally, they fear a large quantity of false positives. 
Some technicians feared they would lose their ability to review long periods of EEG or that 
they might lose their jobs. A few participants doubted whether all technicians would be 
willing to try the software. 
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Limitations 

This study was conducted with employees of two different EMUs from the same tertiary 
epilepsy center. The results may not be applicable elsewhere. However, our findings may 
serve as a baseline to consider challenges when implementing automated EEG-based 
detection software. 

We chose to inform participants about automated detection software before the interviews. 
This approach may have introduced a bias, but ensured participants were well-informed. 
Additionally, there might be a selection bias in that respondents volunteered to participate, 
leaving open the possibility that nonrespondents felt differently. 

The interviewer was familiar with the work and knew the respondents, which may have 
affected responses in an unknown direction. 

 

Practice recommendations 

Qualitative methods are a valuable tool in implementation research because they help to 
answer complex questions such as how and why efforts to implement best practices may 
succeed or fail [19]. We evaluated potential factors influencing the future implementation of 
automated EEG-based software. 

Based on the results, we suggest the following recommendations regarding implementation. 
We learned that trust in the software needs to be gained, especially regarding the ability to 
detect seizures. Merely reading papers stating that automated EEG-based detection can be 
used safely does not inspire sufficient trust. Users need to acquire first-hand experience 
regarding the performance of automated EEG-based detection and must therefore be given 
time to do so. We propose reviewing EEGs both visually and with automated detection 
software. Furthermore, we suggest applying the software selectively, as we previously 
showed that the software did not detect all seizure types adequately, nor was it equally 
useful for all groups of patients. For example, reliability was limited in pediatric EEGs and 
short tonic seizures [10]. Hence, EEGs in these categories are better reviewed by the 
conventional methods, implying the need for triage. 

Some technicians mentioned a fear of losing their ability to review long periods of EEG or 
even losing their job. We recommend that untrue fears be addressed as such. This can be 
achieved by providing sufficient information. We previously proposed a method where we 
use sampled visual review combined with automated EEG-based detection in a selection of 
EEGs [17]. With such a hybrid approach, technicians would still review EEGS, just to a lesser 
extent and for shorter periods. Furthermore, technicians need to be given the opportunity to 
learn new skills. This can be, for example, extracting more information from the EEG using 
trend analysis or improving the skill of reviewing difficult pediatric EEGs. Finally, outpatient 
clinic neurologists must also be kept informed regarding changes in the EEG review workflow 
using (educational) meetings. 
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Both information providing and training can be achieved by frequent educational meetings 
and feedback [20,21]. Outcome improves with, for example, shorter meetings, better 
attendance, shorter follow-up or interactive teaching methods [21]. 

The advantage of automated spike and seizure detection is improved efficiency. It would be 
useful to measure savings in time and money, after implementation, as would users’ 
thoughts, attitudes, experiences and needs. Furthermore, the output of these detection 
software packages can also be used for other purposes, for instance averaging 
interictal epileptiform discharges for source localization and determining seizure onset zones 
[22,23]. Additionally, it would be informative to share experience with other EMUs. 

This research gives an insight into (future) users’ perspectives. Thereby we provide practice 
recommendations regarding implementation. 
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Chapter 7 - General discussion 

This thesis aimed to investigate whether automated spike and seizure detection can be used 
to review prolonged EEGs without compromising diagnostic quality. This research included 
the potential to combine automated detection with sampled visual review. In this chapter, 
we will provide a summary of our findings and discuss future implementation and potential 
applications of our research. 

 

Most important findings and discussion 

Automated spike detection (Chapter 4) 

The software performed as well as human experts in detecting IEDs (interictal epileptiform 
discharges), making it a useful screening tool for finding these abnormalities in parts of the 
EEG not reviewed visually. When the software is set to its default (medium) setting, Persyst 
and Encevis achieved the highest sensitivities (82-95% for Persyst and 61-86% for Encevis). 
Both software packages had kappa scores similar to those of  human experts, meaning they 
can identify most IEDs with a reasonable level of accuracy. These specificities are higher than 
reported in previous studies [1,2,3,4], probably due to the fact that we did not review single 
IEDs but measured whether 10-second epochs and 30-minute selections contained IEDs. This 
high sensitivity is necessary when using the software as a screening tool, although it may also 
generate false positives. Specificity for Persyst and Encevis was 88%. Consequently, it is 
imperative that the findings generated by the software are visually verified by human 
experts. This implies that the most significant time savings are in normal or nearly normal 
prolonged EEGs, as well as in EEGs displaying unifocal abnormalities, since there would be 
minimal or no findings necessitating verification. 

Additionally, objective quantification of detected IEDs is another useful and reliable feature, 
as we showed in the calculation of the spike-wave index. 

 

Automated seizure detection (Chapter 5) 

The Persyst software performed best, resulting in a sensitivity of 95% (BESA) and 98% 
(Encevis, Persyst) when aiming to detect at least one of the seizures occurring within an 
individual record; sensitivity was 84% (BESA), 88% (Encevis) and 93% (Persyst) when aiming to 
detect all seizures. A recent study comparing the same three software packages reported a 
sensitivity of 77% for BESA, 78% for Encevis and 82% for Persyst [5]. Other earlier studies found 
that detection algorithms had a sensitivity for epileptic seizures between 73% and 96% 
[5,6,7,8]. Our study reported higher sensitivities than other earlier studies. This is due to the 
fact that we used another study design where we simulated how the software would be used 
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in a realistic EMU setting. We did so firstly by reviewing the combination of live human 
observation and offline review, comparing the performance of the clinical physiologists 
versus the software and secondly by using a broad scale of seizure types including 
generalized seizures, such as myoclonia and tonic seizures. However, these results show that 
even the best performing automated seizure detection algorithm does not detect all seizures 
when using automated seizure detection alone. 

 
Sampled visual review in combination with automated detection software (Chapter 3) 

A new review method, using sampled visual EEG review alongside automated detection 
software, yielded comparable electro-clinical diagnoses to those obtained through complete 
visual review. The notable benefit of this review approach lies in its potential reduction of 
overall reviewing time, particularly in our setting where numerous prolonged EEGs are 
conducted. 

We found relying on automated detection software alone is not possible (Chapter 5). First, 
sampled visual review remains necessary to form an impression of the background activity 
and potential (focal or diffuse) dysfunctions or rhythmic delta activity. We showed that 
reviewing a one hour period while awake, another hour while asleep and an hour after 
wakefulness was enough for this purpose. Second, automated software packages were likely 
to miss short seizures or seizures with subtle or no EEG changes, such as myoclonic, short 
tonic and focal aware seizures. However, we found that patients could usually detect 
myoclonus and focal aware seizures themselves and report these events via the push button. 
This finding is supported by previous literature [9,10]. Furthermore, our proposed method 
using a targeted sampled review, including a period after waking, can also increase detection 
of myoclonic seizures that usually occur in this period.  

This conclusion does not extend to generalized tonic seizures; our data show a large 
proportion of those remained undetected in the live setting. We suggest that EEGs, 
performed to investigate tonic seizures, should be thoroughly visually reviewed to avoid 
missing significant events. 

Furthermore, all three automated detection software packages used in our research include 
quantitative EEG spectrograms. These are mathematically compressed assessments of raw 
EEG. These spectrograms fell outside the scope of our current research. However, previous 
research showed the use of quantitative EEG spectrograms can increase the detection of 
seizures [11]. 

The highest sensitivities were found for (focal to) generalized tonic clonic seizures and focal 
seizures with impaired awareness. The latter are regularly missed in the live setting by nurses 
and patients but are often detected by automated seizure detection [12]. 
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Interviews regarding implementation of automated detection software (Chapter 6) 

We identified several barriers and facilitators regarding implementation of automated spike 
and seizure detection software. Most important points of attention are: technicians and 
medical staff need to gain trust in the software, especially in its seizure detection ability, and 
they should be given the opportunity to experience the software's performance themselves. 
Some technicians feared losing their ability to review EEGs or even lose their job; such these 
fears need to be addressed by providing sufficient information. Although human review of 
the software-detected epileptiform discharges and seizures will always be necessary, 
technicians' review time will be reduced, and their job will change in nature but will not 
disappear. Technicians need to be given the opportunity to learn new skills, such as extracting 
more information from the EEG using trend analysis or improving their skill of reviewing more 
difficult paediatric EEGs. Lastly, the majority of neurologists in outpatient clinics perceive the 
utilization of automated detection methods as a beneficial advancement. However, they 
express the importance of being informed about any modifications in the EEG review 
workflow. 

 

Current implementation process 

In 2022, SEIN obtained a license for the Persyst software package, which includes features for 
spike detection, seizure detection, and trend analyses. The spike detection module offers 
three sensitivity settings, namely low, medium (default), and high. The software detects 
spikes and clusters them per electrode based on maximum amplitude. For each detected 
spike, the software generates 1-second epochs centered around the event, with an average 
signal per electrode. It also allows for the review of individual potentially abnormal findings. 

With respect to seizure detection, the manual specifies that the algorithm can detect ictal 
patterns with a minimum duration of 11 seconds (version 13) or 8 seconds (version 14). The 
output of this module is a list of timed seizure detections. 

Additionally, the software offers various options for quantitative EEG spectograms, based on 
parameters such as amplitude, frequency, rhythmicity, and degree of electrographic 
asymmetry [11]. 

We utilized the findings of our qualitative study to optimize the implementation process, and 
as a result, the detection software is now employed for the following purposes. 

1) Calculating Spike-wave index.  
Useful in calculating a first as well as a follow-up record, for instance after a 
prednisolone treatment. 
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2) Reviewing multiple prolonged EEGs (20 to 48 hours) per week in teenagers and 
adults (> 16 years) using sampled review in combination with automated EEG-based 
detection.  

We use this for the following indications: 

a. Psychogenic non-epileptic seizures.  
Rule out any (inter)ictal epileptiform discharges. 

b. Temporal lobe epilepsies. 
Detect seizures and interictal epileptiform discharges. 

c. Interictal discharges. 
Detect and quantify interictal epileptiform discharges. 

d. Generalized epilepsy such as JME. 
Detect seizures and interictal epileptiform discharges. 

 
The greatest advantage proved to be increased efficiency in the EEG workflow. Given the 
current shortage of personnel and lengthy waiting lists, this improvement could potentially 
enable the examination of a greater number of EEG hours. 

 
Future perspectives 

We plan to expand the use of automated detection software to review an increased number 
of prolonged EEGs, including those of presurgical patients. In this patient group, EEG records 
can last up to 5 days, making their analysis very labour intensive. In this patient group it could 
be particularly useful to measure the ratio of epileptiform discharges in the left versus the 
right hemisphere to determining the seizure onset zone. We are also looking to expand the 
patient group to children under 16 years old. For instance, absence epilepsy appears 
particularly suitable for reviewing using automated detection software. 

Additionally, we aim to optimize the use of trend analyses provided by the software to 
improve the detection of seizures and other relevant EEG findings [11]. Furthermore, it can be 
helpful to also use other modalities for seizure detection, such as surface electromyography, 
accelerometry, video detection systems and mattress sensors for seizures with motor 
manifestations. And heart rate and oxygen saturation for ictal changes in physiologic 
parameters [13]. 

Furthermore, the output of these detection software packages can also be used for other 
purposes. For instance, labeling spikes for scientific purposes, averaging or source 
localization may prove useful [14,15]. 
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Finally, it is possible that automated detection may also be implemented in the online setting. 
This can improve patient safety, create live automated documentation of seizures, and 
perhaps even computer-based neurological and neuropsychological testing during and after 
seizures [16]. 
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Chapter 8 - Summary 

The aim of this thesis was to investigate whether automated spike and seizure detection can 
be used to review prolonged EEGs without compromising the quality of the results. This 
research included the potential to combine automated detection with sampled visual review. 

 
Chapter 2 - The spike–wave index (SWI) 

The thesis started with a study on calculation of the spike-wave index (SWI), which quantifies 
the amount of epileptiform activity occurring during sleep. This is a key feature in the 
diagnosis of electrical status epilepticus during slow-wave sleep (ESES) [1]. 

The research compared the performance of a commercially available spike detection 
algorithm with human expert consensus. The results showed that SWIs estimated by human 
experts did not differ from the SWIs calculated by the automated spike detection algorithm 
in its ‘low’ (most strict) sensitivity setting (P = 0.67). 

 
Chapter 3 - Sampled visual EEG review in combination with automated detection software 

In this study we compared electroclinical diagnosis using sampled visual review in 
combination with automated spike and seizure detection software to complete visual review. 
The sampled EEG comprised the first hour of recording during wakefulness, including 
hyperventilation provocation and intermittent photic stimulation, the first hour of sleep, and 
the first half-hour after sleep the next morning, which was included due to the circadian 
distribution of some generalized epilepsies (especially JME). Additionally, EEG and video 
periods around events marked by nurse or patient were reviewed. 

Our findings indicate that the electroclinical diagnosis based on sampled visual review 
combined with automated detection software did not differ from the diagnosis based on 
complete visual review. This means the detection software was able to identify all records 
containing epileptiform abnormalities and epileptic seizures.  

 

Chapter 4 - Automated spike detection: Which software package? 

In this chapter, we evaluated the performance of three commercial automated spike 
detection software packages (Persyst, Encevis, and BESA) to determine which performed the 
best at our EMU setting. A heterogeneous dataset was annotated by three human experts 
and by all three software packages. We defined the gold standard as the combined 
detections of the experts and compared this to each software package. For each 30-minute 
selection and for each 10-second epoch, we measured whether or not interictal epileptiform 
activity occurred. 
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The sensitivity of Persyst in the default (medium) setting was 95% for 30-minute selections 
and 82% for 10-second epochs. The sensitivity of Encevis was 86% for 30-minute selections and 
61% for 10-second epochs. The specificity for both packages was 88% for 30-minute selections 
and 96%-99% for the 10-second epochs. The inter-rater agreement between Persyst and 
Encevis and the experts was similar to that between the experts (0.67–0.83 versus 0.63–
0.67). The sensitivity for BESA was 40% and specificity 100%. The inter-rater agreement (0.25) 
was low. 

These results indicate that the automated spike detection software in Persyst performs 
better than Encevis and BESA packages and is comparable to human review when reviewing 
30-minute selections and 10-second epochs for the detection of interictal epileptiform 
activity. 
 

Chapter 5 - Automated seizure detection in an EMU setting: Are software packages ready 
for implementation? 

We evaluated the reliability of automated seizure detection software in an EMU setting, using 
three commercial packages: Persyst, Encevis, and BESA. To assess the practical use of these 
software packages, we compared their seizure detection performance to that of online 
human observation (performed by trained nurses) in combination with both conventional 
review by technicians and automated seizure detection using the three software packages. 

Seizure detection sensitivity was 98% for both Encevis and Persyst, and 95% for BESA, when a 
positive result was defined as detection of at least one seizure occurring within an individual 
record. When positivity was defined as recognition of all seizures, sensitivity was 93% for 
Persyst, 88% for Encevis, and 84% for BESA. Technicians’ review had a sensitivity of 100% at the 
record level and 98% at the seizure level. The median false positive rate per 24 hours was 1.7 
for Persyst, 2.4 for BESA, and 5.5 for Encevis. Sensitivity was especially high for focal seizures 
with impaired awareness and (focal to bilateral) tonic-clonic seizures. Sensitivity was low for 
myoclonia, short tonic seizures and focal aware seizures. Furthermore, the automated 
detection software detected five additional seizures, which were initially missed in the offline 
review by the technician. 

In conclusion, automated seizure detection software does not perform as well as human 
technicians. However, it can be useful in an EMU setting as long as the user is aware of its 
limitations. Among the software packages tested, Persyst performed best. 

 

Chapter 6 - Automated spike and seizure detection: Are we ready? 

The objective of this study is to identify the factors that impede (‘barriers’) and facilitate 
(‘facilitators’) the implementation of automated EEG-based detection in clinical practice. The 
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implementation of changes in healthcare practices is a challenging task, and its success 
largely depends on the acceptability of the innovation by healthcare professionals and 
stakeholders, and their willingness to try it [2]. 

Semi-structured interviews were conducted with 22 participants, including nine technicians, 
five neurologists and physician assistants from a clinical neurophysiology department and 
eight outpatient clinic neurologists. The interviews were recorded and transcribed for 
analysis. 

We identified 14 barriers and 14 enablers for future implementation. Most barriers were 
reported by technicians. The most prominent barrier was lack of trust in the software, 
especially regarding seizure detection and false positive results. Additionally, technicians 
feared losing their EEG review skills or even their jobs. Most commonly reported enablers 
included potential efficiency in the EEG workflow, the opportunity for quantification of EEG 
findings and the willingness to try the software.  

This study provides insight into the perspectives of users and offers recommendations for 
implementing automated spike and seizure detection in EMUs. 
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Nederlandse samenvatting 

Het doel van deze thesis was om te onderzoeken of geautomatiseerde piek- en 
aanvalsdetectie kan worden gebruikt om langdurige EEGs te beoordelen zonder de 
kwaliteit hiervan in gevaar te brengen. Daarbij omvatte deze thesis ook een nieuwe 
methode waarbij automatische detectie werd gecombineerd met gesamplede visuele 
beoordeling. 

 

Hoofdstuk 2 - de Spike-wave index (SWI) 

Dit promotietraject begon met een onderzoek naar de berekening van de spike-wave 
index (SWI), die de hoeveelheid epileptiforme activiteit tijdens de slaap kwantificeert. 
Dit is een belangrijk onderdeel van de diagnose electrical status epilepticus during slow-
wave sleep (ESES) [1]. Het onderzoek vergeleek de prestaties van een commercieel 
beschikbaar piekdetectie algoritme met de consensus van menselijke experts. De 
resultaten toonden aan dat SWI geschat door menselijke experts niet verschilden van 
de SWI berekend door de automatische piekdetectie in de ‘low’ (meest strenge) 
sensitiviteit setting (P = 0,67). 

 

Hoofdstuk 3 - Gesamplede visuele EEG-beoordeling in combinatie met beoordeling 
door automatische piek- en aanvalsdetectie  

In deze studie vergeleken wij de electroklinische diagnose gebaseerd op gesamplede 
visuele beoordeling in combinatie met automatische piek- en aanvalsdetectie met 
volledige visuele beoordeling. Het gesamplede EEG omvatte het eerste uur van de 
registratie tijdens waak, inclusief hyperventilatieprovocatie en intermitterende 
fotostimulatie, het eerste uur van de slaap, en de eerste half uur na de slaap de 
volgende ochtend. Het laatste werd opgenomen vanwege de circadiane distributie van 
sommige gegeneraliseerde epilepsiesyndromen (vooral JME). Daarnaast werd zowel 
de video als EEG visueel bekeken rondom de door verpleging of patiënt gemelde 
gebeurtenissen.  
De electroklinische diagnose op basis van gesamplede visuele beoordeling in 
combinatie met geautomatiseerde detectiesoftware verschilde niet van de diagnose op 
basis van volledige visuele beoordeling. Dit betekent dat de detectiesoftware in staat 
was om alle registraties te identificeren die epileptiforme afwijkingen of epileptische 
aanvallen bevatten. 



A

Nederlandse samenvatting 

103 
 

 
Hoofdstuk 4 - Automatische piekdetectie: welk softwarepakket?  

In dit hoofdstuk hebben we de prestaties van drie commerciële automatische 
piekdetectiesoftwarepakketten (Persyst, Encevis en BESA) geëvalueerd om te bepalen 
welke het beste presteerde in onze EMU-setting. Interictale epileptiforme afwijkingen 
in een heterogene dataset werd geannoteerd door drie menselijke experts en door alle 
drie de softwarepakketten. We definieerden de gouden standaard als de 
gecombineerde detecties van de experts en vergeleken dit met de detecties van elk 
softwarepakket. Voor elke selectie van 30 minuten en voor elke 10-seconden epoch 
hebben we gemeten of interictale epileptiforme activiteit al dan niet voorkwam. De 
sensitiviteit van Persyst in de standaard (‘medium’) instelling was 95% voor selecties 
van 30 minuten en 82% voor 10-seconden-epochs. De sensitiviteit van Encevis was 86% 
voor selecties van 30 minuten en 61% voor 10-seconden-epochs. De specificiteit voor 
beide pakketten was 88% voor selecties van 30 minuten en 96%-99% voor de 10-
seconden-epochs. De interbeoordelaarsovereenkomst tussen Persyst en Encevis en de 
experts was vergelijkbaar met die tussen de experts (0,67-0,83 versus 0,63-0,67). De 
sensitiviteit voor BESA was 40% en de specificiteit 100%. De 
interbeoordelaarsovereenkomst (0,25) was laag.  
Deze resultaten geven aan dat de automatische piekdetectiesoftware van Persyst 
beter presteert dan de Encevis- en BESA-pakketten en vergelijkbaar is met menselijke 
beoordeling van interictale epileptiforme activiteit in selecties van 30 minuten en 10-
seconden-epochs. 

 

Hoofdstuk 5 - Geautomatiseerde detectie van epileptische aanvallen in een EMU 
omgeving: zijn softwarepakketten klaar voor implementatie?  

We hebben drie commerciële automatische aanvalsdetectie softwarepakketten 
gevalideerd: Persyst, Encevis en BESA. Om de praktijk zo goed mogelijk te benaderen, 
hebben we de detecties van epileptische aanvallen door live observatie 
(verpleegkundigen) in combinatie met zowel conventionele beoordeling door 
laboranten als in combinatie met geautomatiseerde aanvalsdetectie 
softwarepakketten bekeken. De gevoeligheid van de aanvalsdetectie was 98% voor 
zowel Encevis als Persyst en 95% voor BESA, waarbij een positief resultaat werd 
gedefinieerd als detectie van ten minste één aanval die binnen een individueel 
registratie plaatsvond. Wanneer een positief resultaat werd gedefinieerd als 
herkenning van alle aanvallen binnen een registratie, was de gevoeligheid 93% voor 
Persyst, 88% voor Encevis en 84% voor BESA. De beoordeling door laboranten had een 
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gevoeligheid van 100% op registratieniveau en 98% op aanvalsniveau. De mediane fout-
positieve ratio per 24 uur was 1,7 voor Persyst, 2,4 voor BESA en 5,5 voor Encevis. De 
sensitiviteit van automatische detectiesoftwarepakketten was vooral hoog voor focale 
aanvallen met verminderde gewaarwording en (focaal naar bilateraal) tonisch-
clonische aanvallen. De sensitiviteit was laag voor myoclonieën, korte tonische 
aanvallen en focale aanvallen met intacte gewaarwording. Daarnaast detecteerde de 
automatische detectiesoftware vijf extra aanvallen die aanvankelijk gemist waren door 
de laborant.  

Concluderend presteert automatische aanvalsdetectiesoftware niet zo goed als 
laboranten. Echter kan automatische aanvalsdetectie toch nuttig zijn bij het 
beoordelen van langdurige EEGs zolang de gebruiker zich bewust is van de 
beperkingen. Onder de geteste softwarepakketten presteerde Persyst het beste. 

 
Hoofdstuk 6 - Geautomatiseerde piek- en aanvalsdetectie: zijn we er klaar voor?  

Implementatie van innovaties in de gezondheidszorg is een uitdagende taak en het 
succes ervan hangt grotendeels af van de acceptatie door zorgprofessionals en hun 
bereidheid om het te proberen [2]. Het doel van deze studie is om factoren te 
identificeren die de implementatie van automatische piek- en aanvalsdetectie in de 
klinische praktijk belemmeren (‘barrières’) en bevorderen (‘facilitators’). Er werden 
semigestructureerde interviews gehouden met 22 deelnemers, waaronder negen KNF-
laboranten, vijf KNF neurologen en physician assistants werkzaam op een KNF-afdeling 
en acht poli-neurologen. De interviews werden opgenomen en getranscribeerd voor 
analyse. We hebben 14 barrières en 14 facilitators geïdentificeerd voor toekomstige 
implementatie. De meeste barrières werden gemeld door laboranten. Zij noemden het 
gebrek aan vertrouwen in de software het vaakst, met name met betrekking tot de 
detectie van aanvallen en vals positieve resultaten. Daarnaast waren de laboranten 
bang om hun vaardigheden voor het beoordelen van EEG's of zelfs hun baan te 
verliezen. De meest genoemde faciliterende factoren waren de mogelijke efficiëntie in 
de EEG workflow, de mogelijkheid om EEG-bevindingen te kwantificeren en hun 
bereidheid om de software te proberen. Deze studie biedt inzicht in de perspectieven 
van gebruikers en biedt aanbevelingen voor de implementatie van geautomatiseerde 
piek- en aanvalsdetectie in de Epilepsy Monitoring Unit (EMU). 
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